Kinematics worksheet 3

1. Under what condition the displacement and the distance of a moving object will have the same magnitude?
Ans. When object moves in a straight line
2. What is the shape of the displacement time graph for uniform linear motion?

Ans. Straight line
3. Figure shows a displacements time graph. Comment on the sign of velocities at point $\mathrm{P}, \mathrm{Q}, \mathrm{R}, \mathrm{S}$.

Ans. $\quad \mathrm{P}$ - positive, Q, S - negative and R - negative
4. Draw displacement time graph for a uniformly accelerated motion? What is its shape?

Ans.

parabolic
5. The displacement x of a particle moving in one dimension under the action of constant force is related to the time by the equation $t=\sqrt{x}-3$ where x is in meters and t is in seconds. Find the velocity of the particle at $(1) t=3 \mathrm{~s}(2) \mathrm{t}=6 \mathrm{~s}$.

Ans. $t=\sqrt{x}-3$
$x=(t+3)^{2}=t^{2}+6 t+9$
$v=\frac{d x}{d t}=\frac{d}{d t}\left(t^{2}+6 t+9\right)=2 t+6$
$v_{3}=2(3)+6=12 \mathrm{~ms}^{-1}$
$v_{6}=2(6)+6=18 m s^{-1}$
6. A balloon is ascending at the rate of $4.9 \mathrm{~m} / \mathrm{s}$. A pocket is dropped from the balloon when situated at a height of 245 m . How long does it take the packet to reach the ground? What is its final velocity?

Ans.

$$
\begin{aligned}
& s=u t+\frac{1}{2} a t^{2} \\
& 245=4.9 t-\frac{1}{2} \times 9.8 \times t^{2}
\end{aligned}
$$

$4.9 t^{2}-4.9 t+245=0$
$(t-7.6)(t+5.6)$
$t=7.6 s$
$v=u+a t=4.9-9.8 \times 7.6=69.6 \mathrm{~ms}^{-1}$
7. A car moving on a straight highway with speed of $126 \mathrm{~km} / \mathrm{hr}$. is brought to stop within a distance of

200 m . What is the retardation of the car and how long does it take for the car to stop?
Ans.
$u=126 \mathrm{kmhr}^{-1}=126 \times \frac{5}{18}=35 \mathrm{~ms}^{-1}$
$v=0$
$s=200 m$
$v^{2}-u^{2}=2 a s$
$0^{2}-35^{2}=2 \times a \times 200$
$a=-3.06 \mathrm{~ms}^{-2}$
$v=u+a t$
$0=354.9-3.06 t$
$t=11.4 s$
8. Derive (i) $v=u+a t$ (ii) $v^{2}-u^{2}=2$ as by calculus method

