Kinematics worksheet 1

1.	Under what condition is the relation $s = vt$ correct?	1
Ans.	When the particle moves with uniform velocity and along a straight line	
2.	Two balls of different masses are thrown vertically upward with same initial speed. Which one will	1
	rise to a greater height?	
Ans.	Same height	
3.	What is the relative velocity of two bodies having equal velocities?	1
Ans.	zero	
4.	Draw displacement time graph for uniformly accelerated motion. What is its shape?	2
Ans.	parabolic	
5.	Sameer went on his bike from Delhi to Gurgaon at a speed of 60km/hr and came back at a speed of	2
	40km/hr. what is his average speed for entire journey.	
Ans.	$v_{av} = 2v_1v_2/v_1 + v_2 = 2x60x40/60 + 40 = 48 \text{ km/hr}$	
6.	Derive $v = u + at$ from calculus method.	2
Ans.		
7.	A particle is moving along a straight line and its position is given by the relation	3
	$x = (t^3 - 6t^2 - 15t + 40)m$	
	Find (a) The time at which velocity is zero.	
	(b) Position and displacement of the particle at that point.	
	(c) Acceleration for the particle at that line.	
Ans.	$X = t^3 - 6t^2 - 15t + 40,$	
	$V = \frac{dx}{dt} = (3t^2 - 12t - 15)m/s$	
	$A = \frac{dv}{dx} = (6t - 12)m/s^2$	
	(a) $3t^2 - 12t - 15 = 0$	
	t = -1 or $t = 5$	
	t = 5 sec	
	(b) position at $t = 0$ s, $x = 40$ m	

position at t = 5s, x = $(5)^3 - 6(5)^2 - 15(5) + 40 = -60m$

Displacement at t = 5s and t = 0s

S = x5 - x0 = -60 - 40 = -100m

- (c) Acceleration at t = 5s, $A = 6(5) 12 = 18 \text{ m/s}^2$
- 8 Velocity time graph of a moving particle is shown.

Find the displacement

- (1) 0 4 s
- (2) 0 8
- (3) 0- 12 s from the graph.
- Ans. (1) $S_1 = \text{area of OABS} = 15 \text{ x } 4 = 60 \text{m}$
 - (2) $S_2 = S_1 + area of CDEF = 60 + (-5) x 4 = 40m$
 - (3) $S_3 = S_1 + \text{area CDEF} + \text{area of FGHI} = 60 20 + 40 = 80m$

