Kinematics worksheet 1

1. Under what condition is the relation $s=\mathrm{v} t$ correct?

Ans. When the particle moves with uniform velocity and along a straight line
2. Two balls of different masses are thrown vertically upward with same initial speed. Which one will rise to a greater height?
Ans. Same height
3. What is the relative velocity of two bodies having equal velocities?

Ans. zero
4. Draw displacement time graph for uniformly accelerated motion. What is its shape?

Ans. parabolic

5. Sameer went on his bike from Delhi to Gurgaon at a speed of $60 \mathrm{~km} / \mathrm{hr}$ and came back at a speed of
$40 \mathrm{~km} / \mathrm{hr}$. what is his average speed for entire journey.
Ans. $\mathrm{vav}_{\mathrm{av}}=2 \mathrm{v}_{1} \mathrm{v}_{2} / \mathrm{v}_{1}+\mathrm{v}_{2}=2 \times 60 \times 40 / 60+40=48 \mathrm{~km} / \mathrm{hr}$
6. Derive $\mathrm{v}=\mathrm{u}+a t$ from calculus method.

Ans.
7. A particle is moving along a straight line and its position is given by the relation
$x=\left(t^{3}-6 t^{2}-15 t+40\right) m$
Find (a) The time at which velocity is zero.
(b) Position and displacement of the particle at that point.
(c) Acceleration for the particle at that line.

Ans. $\mathrm{X}=\mathrm{t}^{3}-6 \mathrm{t}^{2}-15 \mathrm{t}+40$,
$\mathrm{V}=\frac{d x}{d t}=\left(3 \mathrm{t}^{2}-12 \mathrm{t}-15\right) \mathrm{m} / \mathrm{s}$
$\mathrm{A}=\frac{d v}{d x}=(6 \mathrm{t}-12) \mathrm{m} / \mathrm{s}^{2}$
(a) $3 \mathrm{t}^{2}-12 \mathrm{t}-15=0$
$\mathrm{t}=-1$ or $\mathrm{t}=5$
$\mathrm{t}=5 \mathrm{sec}$
(b) position at $\mathrm{t}=0 \mathrm{~s}, \mathrm{x}=40 \mathrm{~m}$
position at $\mathrm{t}=5 \mathrm{~s}, \mathrm{x}=(5)^{3}-6(5)^{2}-15(5)+40=-60 \mathrm{~m}$

Displacement at $\mathrm{t}=5 \mathrm{~s}$ and $\mathrm{t}=0 \mathrm{~s}$
$S=x 5-x 0=-60-40=-100 m$
(c) Acceleration at $\mathrm{t}=5 \mathrm{~s}, \mathrm{~A}=6(5)-12=18 \mathrm{~m} / \mathrm{s}^{2}$

8 Velocity time graph of a moving particle is shown.

Ans. (1) $\mathrm{S}_{1}=$ area of $\mathrm{OABS}=15 \times 4=60 \mathrm{~m}$
(2) $\mathrm{S}_{2}=\mathrm{S}_{1}+$ area of CDEF $=60+(-5) \times 4=40 \mathrm{~m}$
(3) $\mathrm{S}_{3}=\mathrm{S}_{1}+$ area CDEF + area of $\mathrm{FGHI}=60-20+40=80 \mathrm{~m}$

