Work, Energy and Power
 Worksheet - 3

1. If two bodies stick together after collision will the collision be elastic or inelastic?

Ans. Inelastic
2. When an air bubble rises in water, what happens to its potential energy?

Ans. Decreases as work is done by upthrust on the bubble.
3. A spring is kept compressed by pressing its ends together lightly. It is then placed in a strong acid, and 1 released. What happens to its stored potential energy?
Ans. It converts to the kinetic energy of the molecules of the acid.
4. A body is moving along Z - axis of a co - ordinate system is subjected to a constant force F given by $\vec{F}=(-\hat{i}+2 j+3 k) N$. What is the work done by this force in moving the body a distance of 4 m along the Z - axis?
Ans. $\quad \vec{F}=(-\hat{i}+2 j+3 k) N$
$\vec{s}=4 k$
$W=\vec{F} \cdot \vec{s}=(-\hat{i}+2 j+3 k) \cdot 4 k=12 J$
5. A ball is dropped from the height h_{1} and if rebounces to a height h_{2}. Find the value of coefficient of restitution?
Ans. $v_{1}=\sqrt{2 g h_{1}}$
$v_{2}=\sqrt{2 g h_{2}}$
$e=\frac{v_{2}}{v_{1}}=\frac{\sqrt{2 g h_{2}}}{\sqrt{2 g h_{1}}}=\sqrt{\frac{h_{2}}{h_{1}}}$
6. State and prove work energy theorem analytically?

Ans.
7. An object of mass 0.4 kg moving with a velocity of $4 \mathrm{~m} / \mathrm{s}$ collides with another object of mass $0.6 \mathrm{~kg} \quad 3$ moving in same direction with a velocity of $2 \mathrm{~m} / \mathrm{s}$. If the collision is perfectly inelastic, what is the loss of K.E. due to impact?
Ans. Kinetic energy before collision
$K=\frac{1}{2} m_{1} u_{1}^{2}+\frac{1}{2} m_{2} u_{2}^{2}=\frac{1}{2} \times 0.4 \times 4^{2}+\frac{1}{2} \times 0.6 \times 2^{2}=4.4 \mathrm{~J}$

As the collision is perfectly inelastic, $v=\frac{m_{1} u_{1}+m_{2} u_{2}}{m_{1}+m_{2}}=\frac{0.4 \times 4+0.6 \times 2}{0.4+0.6}=2.8 \mathrm{~ms}^{-1}$
Kinetic energy after collision
$K^{\prime}=\frac{1}{2}\left(m_{1}+m_{2}\right) v^{2}=\frac{1}{2} \times(0.4+0.6) \times 2.8^{2}=3.92 J$

Loss in K.E, $K^{\prime}-K=4.4-3.92=0.48 J$
8 Prove that in an elastic collision in one dimension the relative velocity of approach before impact is equal to the relative velocity of separation after impact?
Ans. (i)
9. (a) Define potential energy. Give examples.
(b) Draw a graph showing variation of potential energy, kinetic energy and the total energy of a body freely falling on earth from a height h ?
Ans.

