Work, Energy and Power Worksheet -1

1.	A spring is cut into two equal halves. How is the spring constant of each half affected?	1
Ans.	Spring constant of each half becomes twice the spring constant of the original spring.	
2.	The momentum of an object is doubled. How does it's. K.E. change?	1
Ans.	$K = \frac{p^{2}}{2m}$ $p' = 2p$ $K' = \frac{(p')^{2}}{2m} = \frac{(2p)^{2}}{2m} = 4\frac{p^{2}}{2m} = 4K$	
3.	In which motion momentum changes but K.E. does not?	1
Ans.	Uniform circular motion	
4.	A light body and a heavy body have same linear momentum. Which one has greater K.E.?	1
Ans.	$K = \frac{p^2}{2m}$	
	As p is constant $K\alpha - \frac{1}{m}$	
	As the mass of the lighter body is less so it will have more kinetic energy	
5.	A shot fired from cannon explodes in air. What will be the changes in the momentum and the kinetic energy?	2
Ans.	The linear momentum will be conserved, because explosion occurs from within. KE will increase due to (chemical) potential energy of the explosives.	
6.	Can a body have momentum without energy?	1
Ans.	Yes. When $E = K + U = 0$, either both are zero or $K = -U$. Thus K.E. may or may not be zero. If $p = 0$, $K = 0$ If $p \neq 0$, $K = -U$	
7.	Obtain an expression for K.E. of a body moving uniformly?	3
Ans.		
8	What is meant by a positive work, negative work and zero work? Illustrate your answer with example?	3
Ans.		
9.	 A body of mass 2kg initially at rest moves under the action of an applied force of 7N on a table with coefficient of kinetic friction = 0.1. Calculate the (1) Work done by the applied force in 10s (2) Work done by the friction in 10s (3) Work done by the net force on the body in 10s. 	3

Ans. Given:
$$m = 2kg$$
, $F = 7N$, $u = 0$
 $\mu = 0.1$, $t = 10s$
Solⁿ:
 $F = ma_1$
 $7 = 2a_1$
 $a_1 = 3.5ms^{-2}$
 $f = \mu R = \mu mg = 0.1 \times 2 \times 9.8 = 1.96N$
Also, $f = -ma_2$
 $1.96 = -2a_2$
 $a_2 = -0.98ms^{-2}$
 $\therefore a = a_1 + a_2 = 3.5 - 0.98 = 2.52ms^{-2}$
Now, $s = ut + \frac{1}{2}at^2 = 0 \times 10 + \frac{1}{2} \times 2.52 \times 100 = 126m$
 $(a)W = Fs = 7 \times 126 = 882J$
 $(b)W = fs = -1.92 \times 126 = -246.9J$
 $(c)W = (F - f)s = (7 - 1.92) \times 126 = 5.04 \times 126 = 635J$

Derive the expression for the potential energy stored in a spring?
 Ans.