## SUNCITY SCHOOL <br> 

## VECTORS

1. a) $\hat{i}$ \& $\hat{j}$ are unit vectors along $x$ and $y$ axis. Find the magnitude and direction of $\hat{i}+\hat{j}$ and $\hat{i}-\hat{j}$
b) Find the components of vector $A=A=2 \hat{i}+3 \hat{j}$ along the vector $\hat{i}+\hat{j}$ and $\hat{i}-\hat{j}$.
2. At what angle the forces $\vec{A}+\vec{B}$ and $\vec{A}-\vec{B}$ act so that their resultant is $\left(3 A^{2}+B^{2}\right)^{1 / 2}$ assume that $\vec{A}$ and $\vec{B}$ are collinear vectors.
3. A vector $\vec{X}$ when added to two vectors $\vec{A}=3 \hat{i}-5 \hat{j}+7 \hat{k}$ and $\vec{B}=2 \hat{i}+4 \hat{j}-3 \hat{k}$ gives a unit vector along $y$ axis as their resultant. Find the vector $\vec{x}$
4. a) Can 2 vectors of different magnitude be combined to give zero resultant? Can 3 vectors do? b) Under what condition/s the magnitude of the sum of 2 vectors is equal to the magnitude of difference between them?
5. The vector sum of two vectors $\vec{P}$ and $\vec{Q}$ is $\vec{R}$. If vector $\vec{Q}$ is reversed, the resultant becomes $\vec{S}$. Then prove that $R^{2}+S^{2}=2\left(P^{2}+Q^{2}\right)$.
6. If unit vectors $A$ and $B$ are inclined at an angle $\theta$, then show that $(A-B)=2 \sin (\theta / 2)$.
7. Find the unit vector perpendicular to each of these vectors $2 \hat{i}+4 \hat{j}-n \hat{k}$ and $3 \hat{i}-4 \hat{j}-2 \hat{k}$ are orthogonal.
8. If $\vec{A}=3 \hat{i}+4 \hat{j} \& \vec{B}=7 \hat{i}+24 \hat{j}$, find a vector having the same magnitude as $\vec{B}$ and parallel to $\vec{A}$.
9. Find the unit vector perpendicular to each of these vectors $\vec{P}=3 \hat{i}+\hat{j}+2 \hat{k}$ and $\vec{Q}=2 \hat{i}-2 \hat{j}+4 \hat{k}$
10. A person moves 30 m north, then 20 m east and then $30 \sqrt{2} \mathrm{~m}$ south west. Find his displacement from the original positions.
11. Three vectors $\vec{A}, \vec{B}$ and $\vec{C}$ are such that $\vec{A}=\vec{B}+\vec{C}$ and their magnitudes are 5,4 and 3 respectively. Find the angle between $\vec{A}$ and $\vec{C}$.
12. A man can swim with a speed of $4 \mathrm{~km} / \mathrm{h}$ in still water. How long does he takes to cross a river 1 km wide, if the river flow steadily at $3 \mathrm{~km} / \mathrm{h}$ and he makes his strokes normal to the river current? How far down the river does he go, when he reaches the other bank?
13. A boatman can row with speed of $10 \mathrm{~km} / \mathrm{h}$ in still water. If the river flows steadily $5 \mathrm{~km} / \mathrm{h}$, in which direction should the boatman row in order to reach a point on the other bank directly opposite to the point from where he started? The width of the river is 2 km .
14. On a certain day rain was falling vertically with a speed of $30 \mathrm{~m} / \mathrm{s}$. If wind starts blowing with a speed of $10 \mathrm{~m} / \mathrm{s}$ in the direction from north to south, find the direction in which a boy should hold his umbrella in order to protect himself from the rain?
