## Units and Measurement

Unit: The chosen standard of measurement of a quantity which has essentially the same nature as that of the quantity is called the unit of that quantity.

## Types of Units

1. Fundamental units - the units of measurement of mass, length and time are called fundamental units.
2. Derived units - the units of measurement of all other physical quantities, which can be obtained from fundamental units are called derived units
Example: $\mathrm{ms}^{-1}, \mathrm{~N}$

## Characteristics of a fundamental unit

It should

1. Be of suitable size.
2. Be easily accessible.
3. Be easily reproducible.
4. Not change with time
5. Not change with changing physical conditions like tem., pressure

## S.I system of Units

It is based on 7 fundamental units and 2 supplementary units

| S.No. | Basic Physical Quantity | Fundamental Unit | Symbol |
| :--- | :--- | :--- | :--- |
| 1 | Mass | Kilogram | kg |
| 2 | Length | Metre | m |
| 3 | Time | Second | s |
| 4 | Temperature | Kelvin | K |
| 5 | Electric current | Ampere | A |
| 6 | Luminous Intensity | Candela | cd |
| 7 | Quantity of matter | Mole | mol |
| S.No. | Supplementary Physical Quantity | Fundamental Unit | Symbol |
| 1 | Plane Angle | Radian | rad |
| 2 | Solid angle | Steradian | sr |

## Advantages of S.I

1. It is a coherent system of units, i.e. it is based on a certain set of fundamental units from which the derived units are obtained by multiplication or division without introducing numerical factors.
2. It is a rational system of units(i.e. one quantity one minute)
for example : in m.k.s mechanical energy - joule, heat energy - calorie, electrical energy - watt hour
in S.I Energy(mechanical, heat, electrical) - joule
3. It is an absolute system of units(no gravitational units of system)
4. It is a metric system (i.e. multiples of units are expressed as power of 10.
5. It is closely related with c.g.s

## Some Important practical units

1. Astronomical unit (AU)- it is the average distance between the centre of sun to the centre of earth.

$$
1 \mathrm{AU}=1.496 \times 10^{11} \mathrm{~m}
$$

2. Light year - it is the distance travelled by light in 1 year

1 light year $=$ speed of light $\times 1$ year

$$
\begin{aligned}
& =3 \times 10^{8} \mathrm{~ms}^{-1} \times 365 \times 24 \times 60 \times 60 \mathrm{sec} \\
& =9.46 \times 10^{15} \mathrm{~m}
\end{aligned}
$$

$$
1 \text { light year }=9.46 \times 10^{15} \mathrm{~m}
$$

3. Par sec - it is the radius of a circle at the centre of which an arc of the circle, 1 AU long subtends an angle of $1^{\prime \prime}$

$\mathrm{L}=1 \mathrm{AU}=1.496 \times 10^{11} \mathrm{~m}, \theta=\frac{1}{60} \mathrm{~min} .=\frac{1}{60 \times 60}$ degree $=\frac{1}{60 \times 60} \times \frac{\pi}{180} \mathrm{rad}$ Now $r=1 / \theta$

So, 1 par sec $=\frac{1 \mathrm{AU}}{1 \text { sec }}=\frac{1.496 \times 1011}{\pi} \times 60 \times 60 \times 180=3.084 \times 10^{16} \mathrm{~m}$

$$
1 \text { par sec }=3.084 \times 10^{16} \mathrm{~m}
$$

