Units and Measurement

Unit: The chosen standard of measurement of a quantity which has essentially the same nature as that of the quantity is called the unit of that quantity.

Types of Units

- 1. **Fundamental units** the units of measurement of mass, length and time are called fundamental units.
- 2. **Derived units** the units of measurement of all other physical quantities, which can be obtained from fundamental units are called derived units

Example: ms⁻¹, N

Characteristics of a fundamental unit

It should

- 1. Be of suitable size.
- 2. Be easily accessible.
- 3. Be easily reproducible.
- 4. Not change with time
- 5. Not change with changing physical conditions like tem., pressure

S.I system of Units

It is based on 7 fundamental units and 2 supplementary units

S.No.	Basic Physical Quantity	Fundamental Unit	Symbol
1	Mass	Kilogram	kg
2	Length	Metre	m
3	Time	Second	S
4	Temperature	Kelvin	К
5	Electric current	Ampere	А
6	Luminous Intensity	Candela	cd
7	Quantity of matter	Mole	mol
S.No.	Supplementary Physical Quantity	Fundamental Unit	Symbol
1	Plane Angle	Radian	rad
2	Solid angle	Steradian	sr

Advantages of S.I

- 1. It is a <u>coherent</u> system of units, i.e. it is based on a certain set of fundamental units from which the derived units are obtained by multiplication or division without introducing numerical factors.
- It is a <u>rational</u> system of units(i.e. one quantity one minute) for example : in m.k.s mechanical energy – joule, heat energy – calorie, electrical energy – watt hour in S.I Energy(mechanical, heat, electrical) - joule
- 3. It is an **<u>absolute</u>** system of units(no gravitational units of system)

- 4. It is a metric system (i.e. multiples of units are expressed as power of 10.
- 5. It is closely related with c.g.s

Some Important practical units

1. <u>Astronomical unit (AU)</u>- it is the average distance between the centre of sun to the centre of earth.

1AU = 1.496 x 10¹¹ m

2. Light year – it is the distance travelled by light in 1 year

1 light year = speed of light x 1 year

= 3 x10⁸ ms⁻¹ x 365 x 24 x 60 x 60 sec

 $= 9.46 \times 10^{15} m$

3. <u>Par sec</u> – it is the radius of a circle at the centre of which an arc of the circle, 1AU long subtends an angle of 1"

L = 1AU = 1.496 x 10¹¹ m,
$$\theta = \frac{1}{60} min. = \frac{1}{60 \times 60} degree = \frac{1}{60 \times 60} \times \frac{\pi}{180} rad$$

Now $r = I/\theta$

So, 1 par sec = $\frac{1\text{AU}}{1 \text{ sec}} = \frac{1.496 \times 1011}{\pi} \times 60 \times 60 \times 180 = 3.084 \times 10^{16} \text{m}$

1 par sec =3.084 x 10¹⁶m