Significant figures

The numbers whose values are accurately known in a particular measurement are called as its significant figures.

Rules for determining the number of significant figures

1. All non- zero are significant

Example: $5432-4$ significant figures
2. All zeroes occurring between two non- zero digits are significant.

Example: $502-3$ significant figures
3. If a number is less than one, the zero(s) on the right of decimal point are not significant Example: $0.00574-3$ significant figures
4. In a number without a decimal point, the trailing zeros are not significant.

Example: 5210-3 significant figures
5. In a number without a decimal point, the trailing zeros are not significant but if they come from a measurement then they are significant. (i.e. a unit is there)
Example: $5210 \mathrm{~m}-4$ significant figures
6. In a number with decimal point, the trailing zeros are significant.

Example: $0.06700-4$ significant figures
7. All zeros to the right of a decimal point are significant, if they are not followed by a nonzero digit.
8. Example: 67.000-5 significant figures
9. Change of units does not change the number of significant figures in a measurement.

Example: $\quad 2.6 \mathrm{~km} \quad-2$ significant figures
$2600 \mathrm{~m} \quad-2$ significant figures
$260000 \mathrm{~cm}-2$ significant figures

Write the number of significant figures in the following:
(i)
6729
(iv) 4200
(ii) 0.024
(v) 91.000
(iii) 4.57×10^{8}

