Class XI

Thermodynamics worksheet 2

1. Draw a $\mathrm{p}-\mathrm{v}$ diagram for isothermal and adiabatic expansion?

Ans.

2. State zeroth law of thermodynamics?

Ans. When the thermodynamic system A and B are separately in thermal equilibrium with a third thermodynamic system C, then the system A and B are in thermal equilibrium with each other also.
3. Can a gas be liquefied at any temperature by increase of pressure alo ne?

Ans. No, a gas can be liquefied by pressure alone, only when temperature of gas is below its critical temperature.
4. A certain gas at atmospheric pressure is compressed adiabatically so that its volume becomes half of its original volume. Calculate the resulting pressure?
Ans.

$$
\text { Given }: V_{1}=V \quad V_{2}=\frac{V}{2}
$$

$$
P_{1}=0.76 \mathrm{mof} \mathrm{Hg} \mathrm{column}
$$

To find $: P_{2}=$?
Sol ${ }^{n}$:
As the change is adiabatic

$$
\begin{aligned}
& P_{1} V_{1}^{\gamma}=P_{2} V_{2}^{\gamma} \\
& P_{2}=P_{1}\left(\frac{V_{1}}{V_{2}}\right)^{\gamma}=0.76\left(\frac{V}{\frac{V}{2}}\right)^{1.4}=0.76 \times(2)^{1.4}
\end{aligned}
$$

$=2 \mathrm{mof} \mathrm{Hg}$ column
$P_{2}=\rho g h=13.6 \times 10^{3} \times 9.8 \times 2=2.67 \times 10^{5} \mathrm{Nm}^{-2}$
5. Why is conversion of heat into work not possible without a sink at lower temperature?

Ans. For converting heat energy in to work continuously a part of heat energy absorbed from the source has to be rejected. The heat energy can be rejected only to a body at lower temperature which is sink, so we require a sink to convert heat into work.
6. Write the sign conventions for the heat and work done during a thermodynamic process?

Ans. (a) When heat is supplied to a system dQ is taken positive but when heat is supplied by a system, dQ is taken negative.
(b) When a gas expands, dW is taken as positive but when a gas compresses, work done is taken as negative.
7. Deduce the work done in the following complete cycle?

Ans. $W_{A B}=$ Area $A B K L A$

$$
\begin{aligned}
& =\text { Area } \triangle A B C+\text { Area BKLC } \\
& =\frac{1}{2} \times B C \times A C+B C \times C L \\
& =\frac{1}{2} \times(4-1) \times 10^{-3} \times(4-2)+(4-1) \times 10^{-3} \times(2-0) \quad\left[\because B C=3 l=3 \times 10^{-3} \mathrm{~m}^{3}\right] \\
& =\frac{1}{2} \times 3 \times 10^{-3} \times 2+3 \times 10^{-3} \times 2 \\
& =9 \times 10^{-3} \mathrm{~J} \\
W_{B C} & =- \text { Area BCLK }=- \text { KL } \times L C=-3 \times 10^{-3} \times 2=-6 \times 10^{-3} \mathrm{~J} \\
W_{C A} & =0 \mathrm{~J} \quad[\because \text { As thereis no change in volume of gas }] \\
W & =W_{A B}+W_{B C}+W_{C A}=9 \times 10^{-3}-6 \times 10^{-3}=3 \times 10^{-3} \mathrm{~J}
\end{aligned}
$$

8 One kilogram molecule of a gas at 400k expands isothermally until its volume is doubled. Find the amount of work done and heat produced?

$$
\begin{aligned}
V_{1} & =V \\
V_{2} & =2 \mathrm{~V} \\
T & =400 \mathrm{~K} \\
R & =8.3 \times 10^{-3} \mathrm{J.mol}^{-1} . \mathrm{K}^{-1} \\
W & =2.303 \mathrm{RT} \log _{10}\left(\frac{V_{2}}{V_{1}}\right) \\
& =2.303 \times 8.3 \times 10^{-3} \times 400 \times \log _{10}\left(\frac{2 \mathrm{~V}}{V}\right) \\
& =2.303 \times 8.3 \times 10^{-3} \times 400 \times \log _{10}(2) \\
& =2.303 \mathrm{~J} \\
& =\frac{2.303}{4.2} \mathrm{cal} .=0.548 \mathrm{cal} .
\end{aligned}
$$

