Test 8

1. What is conserved in Bernoulli's theorem?

Ans. total energy of liquid at all points
2. If the rate of flow of liquid through a horizontal pipe of length 1 and radius R is Q. What is rate of flow of liquid if length and radius of tube is doubled?
Ans.
$V=\frac{\pi}{8} \frac{p r^{4}}{\eta l}$
$r^{\prime}=2 r$
$l^{\prime}=2 l$

$$
\begin{aligned}
V^{\prime} & =\frac{\pi}{8} \frac{p\left(r^{\prime}\right)^{4}}{\eta l^{\prime}} \\
& =\frac{\pi}{8} \frac{p(2 r)^{4}}{\eta(2 l)} \\
& =8\left(\frac{\pi}{8} \frac{p r^{4}}{\eta l}\right) \\
& =8 \mathrm{~V}
\end{aligned}
$$

3. Water is coming out of a hole made in the wall of tank filled with fresh water. If the size of the hole is increased, will the velocity of efflux change?
Ans. $V=\sqrt{2 g h}$
Since the velocity of efflux is independent of area of hole, it will remain the same.
4. The accumulation of snow on an aero plane wing may reduce the lift. Explain?

Ans. Due to the accumulation of snow on the wings of the aero plane, the structure of wings no larger remains as that of aerofoil. As a result, the net upward force (i.e. lift) is decreased.
5. Two pipes P and Q having diameters $2 \times 10^{-2} \mathrm{~m}$ and $4 \times 10^{-2} \mathrm{~m}$ respectively are joined in Series with the main supply line of water. What is the velocity of water flowing in pipe P ?
Ans. $\quad D_{P}=2 \times 10^{-2} \mathrm{~m}$
$r_{P}=\frac{D_{P}}{2}=\frac{2 \times 10^{-2}}{2}=10^{-2} \mathrm{~m}$
$a_{P}=\pi r_{P}^{2}=3.14 \times\left(10^{-2}\right)^{2} m^{2}=3.14 \times 10^{-4} m^{2}$
$D_{Q}=4 \times 10^{-2} \mathrm{~m}$
$r_{Q}=\frac{D_{Q}}{2}=\frac{4 \times 10^{-2}}{2}=2 \times 10^{-2} \mathrm{~m}$
$a_{Q}=\pi r_{Q}^{2}=3.14 \times\left(2 \times 10^{-2}\right)^{2} \mathrm{~m}^{2}=3.14 \times 4 \times 10^{-4} \mathrm{~m}^{2}$
Acc.to equation of continuity
$a_{P} v_{P}=a_{Q} v_{Q}$

$$
\begin{aligned}
3.14 \times 10^{-4} \times v_{P} & =3.14 \times 4 \times 10^{-4} v_{Q} \\
v_{P} & =4 v_{Q}
\end{aligned}
$$

6. A horizontal pipe of diameter 20 cm has a constriction of diameter 4 cm . The velocity of water in the pipe is $2 \mathrm{~m} / \mathrm{s}$ and pressure is $10^{7} \mathrm{~N} / \mathrm{m}^{2}$. Calculate the velocity and pressure at the constriction?

Ans.
$r_{1}=20 \mathrm{~cm}=20 \times 10^{-2} \mathrm{~m}$
$r_{1}=\frac{D_{1}}{2}=\frac{20 \times 10^{-2}}{2}=10^{-1} \mathrm{~m}$
$a_{1}=\pi r_{1}^{2}=3.14 \times\left(10^{-1}\right)^{2} m^{2}=3.14 \times 10^{-2} \mathrm{~m}^{2}$
$D_{2}=4 \mathrm{~cm}=4 \times 10^{-2} \mathrm{~m}$
$r_{2}=\frac{D_{2}}{2}=\frac{4 \times 10^{-2}}{2}=2 \times 10^{-2} \mathrm{~m}$
$a_{2}=\pi r_{2}^{2}=3.14 \times\left(2 \times 10^{-2}\right)^{2} \mathrm{~m}^{2}=3.14 \times 4 \times 10^{-4} \mathrm{~m}^{2}$
Acc.to equation of continuity
$a_{1} v_{1}=a_{2} v_{2}$
$3.14 \times 10^{-2} \times 2=3.14 \times 4 \times 10^{-4} v_{2}$

$$
v_{2}=50 \mathrm{~ms}^{-1}
$$

Acc.to Bernoullie' stheorem (for a horizontal pipe)
$P_{1}+\frac{1}{2} \rho v_{1}^{2}=P_{2}+\frac{1}{2} \rho v_{2}^{2}$
$P_{1}-P_{2}=\frac{1}{2} \rho\left[v_{2}^{2}-v_{1}^{2}\right]$
$10^{7}-P_{2}=\frac{1}{2} \times 10^{3}\left[50^{2}-2^{2}\right]$
$=\frac{1}{2} \times 10^{3}[2500-4]$

$$
=12.48 \times 10^{5}
$$

$$
P_{2}=10^{7}-12.48 \times 10^{5}=8.75 \times 10^{6} \mathrm{Nm}^{-2}
$$

7. The reading of a pressure metre attached to a closed is $2.5 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$. On opening the valve of pipe, the reading of the pressure metre reduces to $2.0 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$. Calculate the speed of water flowing through the pipe?
Ans. Given: $P_{1}=2.5 \times 10^{5} \mathrm{Nm}^{-2} \quad P_{2}=2 \times 10^{5} \mathrm{Nm}^{-2}$

$$
\rho=1000 \mathrm{Kgm}^{-3} \quad v_{1}=0 \mathrm{~ms}^{-1}
$$

To find: $v_{2}=$?
Sol ${ }^{n}$: Acc.to Bernoullie's theorem (for a horizontal pipe)

$$
\begin{aligned}
P_{1}+\frac{1}{2} \rho v_{1}^{2} & =P_{2}+\frac{1}{2} \rho v_{2}^{2} \\
P_{1}-P_{2} & =\frac{1}{2} \rho\left[v_{2}^{2}-v_{1}^{2}\right] \\
2.5 \times 10^{5}-2 \times 10^{5} & =\frac{1}{2} \times 10^{3}\left[v_{2}^{2}-0^{2}\right] \\
5 \times 10^{4} \quad & =\frac{1}{2} \times 10^{3} \times v_{2}^{2} \\
v_{2}^{2} & =100 \\
v_{2} & =10 m s^{-1}
\end{aligned}
$$

8. A large bottle is fitted with a siphon made of capillary glass tubing. Compare the co-efficient of viscosity of water and petrol if the time taken to empty the bottle in the two cases is in the ratio $2: 5$. Given specific gravity of petrol $=0.8$
Ans.

$$
\begin{aligned}
& \frac{V}{t_{1}}=\frac{\pi}{8} \frac{p_{1} r^{4}}{\eta_{1} l} \quad \rightarrow(1) \\
& \frac{V}{t_{2}}=\frac{\pi}{8} \frac{p_{2} r^{4}}{\eta_{2} l} \quad \rightarrow(2)
\end{aligned}
$$

$$
(1) \div(2)
$$

$$
\frac{\frac{V}{t_{1}}}{\frac{V}{t_{2}}}=\frac{\frac{\pi}{8} \frac{p_{1} r^{4}}{\eta_{1} l}}{\frac{\pi}{8} \frac{p_{2} r^{4}}{\eta_{2} l}}
$$

$$
\frac{t_{2}}{t_{1}}=\frac{p_{1}}{p_{2}} \times \frac{\eta_{2}}{\eta_{1}}
$$

$$
=\frac{\rho_{1} g h}{\rho_{2} g h} \times \frac{\eta_{2}}{\eta_{1}}
$$

$$
=\frac{\rho_{1}}{\rho_{2}} \times \frac{\eta_{2}}{\eta_{1}}
$$

$$
\frac{5}{2}=\frac{10^{3}}{0.8 \times 10^{3}} \times \frac{\eta_{2}}{\eta_{1}}
$$

$$
\frac{\eta_{1}}{\eta_{2}}=\frac{1}{2}
$$

9. Under a pressure head, the rate of flow of liquid through a pipe is Q. If the length of pipe is doubled and diameter of pipe is halved, what is the new rate of flow?
Ans.
$Q=\frac{\pi}{8} \frac{p r^{4}}{\eta l}$
$d^{\prime}=\frac{d}{2} s \quad$ so $\quad r^{\prime}=\frac{r}{2}$
$l^{\prime}=2 l$
$Q^{\prime}=\frac{\pi}{8} \frac{p\left(r^{\prime}\right)^{4}}{\eta l^{\prime}}$

$$
=\frac{\pi}{8} \frac{p\left(\frac{r}{2}\right)^{4}}{\eta(2 l)}
$$

$$
=\frac{1}{32}\left(\frac{\pi}{8} \frac{p r^{4}}{\eta l}\right)
$$

$$
=\frac{1}{32} Q
$$

10. In a horizontal pipeline of uniform area of cross - section, the pressure falls by $5 \mathrm{~N} / \mathrm{m}^{2}$

Ans. Given: $P_{1}-P_{2}=5 \mathrm{Nm}^{-2}$

$$
\begin{aligned}
& \rho=800 \mathrm{Kgm}^{-3} \\
& v_{1}=0 \mathrm{~ms}^{-1}
\end{aligned}
$$

To find: Change in K.E per $k g=$?
Sol ${ }^{n}$:
Acc.to Bernoullie's theorem (for a horizontal pipe)
$P_{1}+\frac{1}{2} \rho v_{1}^{2}=P_{2}+\frac{1}{2} \rho v_{2}^{2}$
$P_{1}-P_{2}=\frac{1}{2} \rho\left[v_{2}^{2}-v_{1}^{2}\right]$
$5=\frac{1}{2} \times 800\left[v_{2}^{2}-v_{1}^{2}\right]$
$\frac{1}{2}\left[v_{2}^{2}-v_{1}^{2}\right]=\frac{5}{800}$
\therefore Change in K.E per $\mathrm{kg}=\frac{5}{800} \mathrm{Jkg}^{-1}=6.25 \times 10^{-3} \mathrm{Jkg}^{-1}$
11. (a) Water flows steadily along a horizontal pipe at a rate of $8 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{s}$. If the area of cross - 3 section of the pipe is $40 \times 10^{-4} \mathrm{~m}^{2}$, Calculate the flow velocity of water.
(b) Find the total pressure in the pipe if the static pressure in the horizontal pipe is $3 \times 10^{4} \mathrm{~Pa}$. Density of water is $1000 \mathrm{Kg} / \mathrm{m}^{3}$.
(c) What is the net flow velocity if the total pressure is $3.6 \times 10^{4} \mathrm{~Pa}$?

Ans.
(a) Velocity of water $=\frac{\text { Rate of flow }}{\text { area of cross }-\mathrm{sec} .}=\frac{8 \times 10^{-3}}{40 \times 10^{-4}}=2 \mathrm{~ms}^{-1}$
(b)Total pressure $=$ Static pressure $+\frac{1}{2} \rho v^{2}$

$$
\begin{aligned}
= & 3 \times 10^{4}+\frac{1}{2} \times 1000 \times 4 \\
& =3.2 \times 10^{4} \mathrm{~Pa}
\end{aligned}
$$

(c)Total pressure $=$ Static pressure $+\frac{1}{2} \rho v^{2}$

$$
\begin{aligned}
3.6 \times 10^{4} & =3 \times 10^{4}+\frac{1}{2} \times 1000 \times v^{2} \\
500 v^{2} & =0.6 \times 10^{4} \mathrm{~Pa} \\
v^{2} & =12 \\
v & =\sqrt{12}=3.5 \mathrm{~ms}^{-1}
\end{aligned}
$$

