Test 8

1. What is conserved in Bernoulli's theorem?
2. If the rate of flow of liquid through a horizontal pipe of length I and radius R is Q. What is rate 1 of flow of liquid if length and radius of tube is doubled?
3. Water is coming out of a hole made in the wall of tank filled with fresh water. If the size of the hole is increased, will the velocity of efflux change?
4. The accumulation of snow on an aero plane wing may reduce the lift. Explain?
5. Two pipes P and Q having diameters $2 \times 10^{-2} \mathrm{~m}$ and $4 \times 10^{-2} \mathrm{~m}$ respectively are joined in Series 2 with the main supply line of water. What is the velocity of water flowing in pipe P?
6. A horizontal pipe of diameter 20 cm has a constriction of diameter 4 cm . The velocity of water in the pipe is $2 \mathrm{~m} / \mathrm{s}$ and pressure is $10^{7} \mathrm{~N} / \mathrm{m}^{2}$. Calculate the velocity and pressure at the constriction?
7. The reading of a pressure metre attached to a closed is $2.5 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$. On opening the valve of pipe, the reading of the pressure metre reduces to $2.0 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$. Calculate the speed of water flowing through the pipe?
8. A large bottle is fitted with a siphon made of capillary glass tubing. Compare the co-efficient of viscosity of water and petrol if the time taken to empty the bottle in the two cases is in the ratio 2:5. Given specific gravity of petrol $=0.8$
9. Under a pressure head, the rate of flow of liquid through a pipe is Q. If the length of pipe is doubled and diameter of pipe is halved, what is the new rate of flow?
10. In a horizontal pipeline of uniform area of cross - section, the pressure falls by $5 \mathrm{~N} / \mathrm{m}^{2}$ between two points separated by a distance of 1 Km . What is the change in kinetic energy per Kg of oil flowing at these points? Given Density of oil $=800 \mathrm{Kg} / \mathrm{m}^{3}$?
11. (a) Water flows steadily along a horizontal pipe at a rate of $8 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{s}$. If the area of cross 3 section of the pipe is $40 \times 10^{-4} \mathrm{~m}^{2}$, Calculate the flow velocity of water.
(b) Find the total pressure in the pipe if the static pressure in the horizontal pipe is $3 \times 10^{4} \mathrm{~Pa}$. Density of water is $1000 \mathrm{Kg} / \mathrm{m}^{3}$.
(c) What is the net flow velocity if the total pressure is $3.6 \times 10^{4} \mathrm{~Pa}$?
