Test Paper 6

1. What is terminal velocity? What is the terminal velocity of a body in a freely falling system
2. The diameter of ball A is half that of ball B . What will be their ratio of their terminal velocities in water?
3. Find out the dimensions of co-efficient of viscosity?
4. What is the cause of viscosity in a fluid? How does the flow of fluid depend on viscosity? What is the cause of viscosity in a fluid? How does the flow of fluid depend on viscosity?
5. If eight rain drops each of radius 1 mm are falling through air at a terminal velocity of $5 \mathrm{cms}^{-1}$.

If they coalesce to form a bigger drop, what is the terminal velocity of bigger drop? If eight rain drops each of radius 1 mm are falling through air at a terminal velocity of $5 \mathrm{cms}^{-1}$. If they coalesce to form a bigger drop, what is the terminal velocity of bigger drop?
6. Why does the cloud seem floating in the sky?
7. A metal plate $5 \mathrm{~cm} \times 5 \mathrm{~cm}$ rests on a layer of castor oil 1 mm thick whose coefficient of viscosity is $1.55 \mathrm{Nsm}^{-2}$. What is the horizontal force required to more the plate with a speed of 2 cms^{-1} ?
8. A small ball of mass ' m ' and density ' d ' dropped in a viscous liquid of density ' d '. After some 3 time, the ball falls with a constant velocity. What is the viscous force on the ball? A small ball of mass ' m ' and density ' d ' dropped in a viscous liquid of density ' d '. After some time, the ball falls with a constant velocity. What is the viscous force on the ball?
9. Two capillary tubes of length 15 cm and 5 cm and radii 0.06 cm and 0.02 cm respectively are connected in series. If the pressure difference a cross the end faces is equal to the pressure of 15 cm high water column, then find the pressure difference across the $: \rightarrow 1$) first tube 2) Second tube.
10. A metallic sphere of radius $1 \times 10^{-3} \mathrm{~m}$ and density $1 \times 10^{4} \mathrm{kgm}^{-3}$ enters a tank of water after a free fall through a high ' h ' in earth's gravitational field. If its velocity remains unchanged after entering water, determine the value of h. Given: co-efficient of viscosity of water $=1 \times 10^{-3}$ $\mathrm{Nsm}^{-2} ; \mathrm{g}=10 \mathrm{~ms}^{-2} ;$ density of water $=1 \times 10^{3} \mathrm{kgm}^{-3}$?

