Numericals rotational motion

Q1.	A torque of 20 N-m is applied on a wheel initially at rest. Calculate the angular momentum of the body.
	dL
	$\tau = \frac{1}{dt}$
	$I_{\rm c} = I_{\rm c}$
	$=\frac{L_2 - L_1}{L_1}$
	$20 = \frac{L_2 - 0}{2}$
	3
	$L_2 = 60 kgm^2 s^{-1}$
Q2.	A flywheel rotating at 420 rpm slows down at a constant rate of 2 rad.s ⁻² . In how much time will it stop?
	420 -
	$v_1 = 420rpm = \frac{-1}{60}rps = 7rps$
	V = 0
	$V_2 = 0$
	$\alpha = -2rad.s^{-2}$
	Now, $\omega_2 = \omega_1 + \alpha t$
	$2\pi v_2 = 2\pi v_1 + \alpha t$
	$0 = 2 \times \frac{1}{7} \times 7 - 2t$
	0 = 44 - 2t
	t = 22s
Q3.	An energy of 484J is spent in increasing the speed of a flywheel from 60 rpm to 360 rpm. Calculate the
	moment of inertia of flywheel.
	W = 484J
	60
	$\omega_1 = 60rpm = \frac{-1}{60} \times 2\pi rad.s^{-1} = 2\pi rad.s^{-1}$
	360
	$\omega_2 = 60rpm = \frac{-1}{60} \times 2\pi rad.s^{-1} = 12\pi rad.s^{-1}$
	$W = E_2 - E_1 = \frac{1}{2}I\omega_2^2 - \frac{1}{2}I\omega_1^2 = \frac{1}{2}I(\omega_2^2 - \omega_1^2)$
	$484 = \frac{1}{2}I((12\pi)^2 - (2\pi)^2)$
	$I = \frac{484 \times 49}{2} = 0.7 kam^2$
	$70 \times 484 = 0.7 \text{ kgm}$
Q4.	What constant torque should be applied to a disc of mass 10kg and diameter 50 cm so that it acquires an
	angular velocity of 2π rad.s ⁻¹ in 4s? The disc is initially at rest and rotates about an axis through the
	centre of the disc and in a plane perpendicular to the disc.

	M = 10 kg
	$R = \frac{50}{2} = 25cm = 0.25m$
	t = 4s
	$\omega_2 = 2\pi \ rad.s^{-1}, \ \omega_1 = 0$
	$\alpha = \frac{\omega_2 - \omega_1}{t} = \frac{2\pi - 0}{4} = \frac{3.14}{2} = 1.57 \ rad.s^{-2}$
	$I = \frac{1}{2}MR^{2} = \frac{1}{2} \times 10 \times 0.25 \times 0.25 = 0.3125kgm^{2}$
Q5.	$\overline{A} = I\alpha = 0.3125 \times 1.57 = 0.49N - m$ A disc of radius 0.5 m is rotating about an axis passing through its centre and perpendicular to its plane.
	A tangential force of 2000 N is applied to bring the disc to rest in 2s. Calculate its angular momentum.
	$r = 0.5m, \qquad F = 2000N$
	$t=2s, \qquad L_2=0$
	$\tau = -Fr = -2000 \times 0.5 = -1000N - m$
	$\tau - \frac{dL}{dL}$
	dt
	$=\frac{L_2-L_1}{L_2-L_1}$
	t
	$-1000 = \frac{0 - L_1}{2}$
	$L_1 = 2000 kgm^2 s^{-1}$