Q1. A torque of $20 \mathrm{~N}-\mathrm{m}$ is applied on a wheel initially at rest. Calculate the angular momentum of the body.

$$
\begin{aligned}
\tau & =\frac{d L}{d t} \\
& =\frac{L_{2}-L_{1}}{t}
\end{aligned}
$$

$$
20=\frac{L_{2}-0}{3}
$$

$$
L_{2}=60 \mathrm{kgm}^{2} \mathrm{~s}^{-1}
$$

Q2. A flywheel rotating at 420 rpm slows down at a constant rate of 2 rad. s^{-2}. In how much time will it stop?

$$
v_{1}=420 \mathrm{rpm}=\frac{420}{60} \mathrm{rps}=7 \mathrm{rps}
$$

$$
v_{2}=0
$$

$$
\alpha=-2 \mathrm{rad} \cdot \mathrm{~s}^{-2}
$$

$$
\text { Now, } \quad \omega_{2}=\omega_{1}+\alpha t
$$

$$
2 \pi v_{2}=2 \pi v_{1}+\alpha t
$$

$$
0=2 \times \frac{22}{7} \times 7-2 t
$$

$$
0=44-2 t
$$

$$
t=22 s
$$

Q3. An energy of 484J is spent in increasing the speed of a flywheel from 60 rpm to 360 rpm . Calculate the moment of inertia of flywheel.
$W=484 \mathrm{~J}$
$\omega_{1}=60 \mathrm{rpm}=\frac{60}{60} \times 2 \pi \mathrm{rad} \cdot \mathrm{s}^{-1}=2 \pi \mathrm{rad} \cdot \mathrm{s}^{-1}$
$\omega_{2}=60 \mathrm{rpm}=\frac{360}{60} \times 2 \pi \mathrm{rad} \cdot \mathrm{s}^{-1}=12 \pi \mathrm{rad} \cdot \mathrm{s}^{-1}$
$W=E_{2}-E_{1}=\frac{1}{2} I \omega_{2}^{2}-\frac{1}{2} I \omega_{1}^{2}=\frac{1}{2} I\left(\omega_{2}^{2}-\omega_{1}^{2}\right)$
$484=\frac{1}{2} I\left((12 \pi)^{2}-(2 \pi)^{2}\right)$
$I=\frac{484 \times 49}{70 \times 484}=0.7 \mathrm{kgm}^{2}$
Q4. What constant torque should be applied to a disc of mass 10 kg and diameter 50 cm so that it acquires an angular velocity of 2π rad. s^{-1} in 4 s ? The disc is initially at rest and rotates about an axis through the centre of the disc and in a plane perpendicular to the disc.

	$\begin{aligned} & M=10 \mathrm{~kg} \\ & R=\frac{50}{2}=25 \mathrm{~cm}=0.25 \mathrm{~m} \\ & t=4 \mathrm{~s} \\ & \omega_{2}=2 \pi \mathrm{rad} . \mathrm{s}^{-1}, \omega_{1}=0 \\ & \alpha=\frac{\omega_{2}-\omega_{1}}{t}=\frac{2 \pi-0}{4}=\frac{3.14}{2}=1.57 \mathrm{rad} . \mathrm{s}^{-2} \\ & I=\frac{1}{2} M R^{2}=\frac{1}{2} \times 10 \times 0.25 \times 0.25=0.3125 \mathrm{kgm}^{2} \end{aligned}$
Q5.	A tangential force of 2000 N is applied to bring the disc to rest in 2 s . Calculate its angular momentum.
	$\begin{aligned} & r=0.5 m, \quad F=2000 \mathrm{~N} \\ & t=2 s, \quad L_{2}=0 \\ & \tau=-F r=-2000 \times 0.5=-1000 \mathrm{~N}-\mathrm{m} \\ & \tau=\frac{d L}{d t} \\ & =\frac{L_{2}-L_{1}}{t} \\ & -1000=\frac{0-L_{1}}{2} \\ & L_{1}=2000 \mathrm{kgm}^{2} \mathrm{~s}^{-1} \end{aligned}$

