SUNCITY SCHOOL

DIMENSIONAL ANALYSIS

1. Convert a power of 1 MW on a system whose fundamental units are $10 \mathrm{~kg}, 1 \mathrm{dm}$ \& 1 minute.
2. A gas bubble from an explosion under water oscillates with a period T proportional to $p^{a} d^{b} E^{c}$ where p is the static pressure, d is the density of water and E is the total energy of the explosion. Find the value of a, b and c.
3. Assuming that the mass m of the largest store that can be moved by a flowing river depends upon the velocity v, density ρ and acceleration due to gravity g, show that m varies with sixth power of the velocity of flow.
4. Calculate the dimension of i) Force and ii) Impulse in terms of velocity v, density ρ \& frequency v as the fundam ental units.
5. Construct a new physical quantity having dimension of length in terms of universal constants G, c and h . What is it called?
6. The coefficient of viscosity η of a gas depends upon the mass m, the effective diameter d and the mean speed of the gas molecules. Use dimensional analysis to find the relation between them.
7. Check the dimensional consistency of the following equations:

$$
h=r \rho g / 2 S \cos \theta
$$

where h is the height, r is the radius, ρ is the density, θ is the angle of contact, S is the surface tension and g is the acceleration due to gravity.
8. The velocity of a body which has fallen freely under gravity varies as $g^{p} h^{q}$ where g is the acceleration due to gravity and h is the height which the body has fallen from. Determine the values of p and q.
9. Find the value of x in the following equation:
$\left(\right.$ velocity) ${ }^{x}=(\text { pressure difference) })^{3 / 2}$ (density) ${ }^{-3 / 2}$
10. Write the dimensions of a and b in the following relations:
a) $E=\frac{b-x^{2}}{a t}$ where E, x and t represents energy, distance and time respectively.
b) $\left(P+\frac{a}{V^{2}}\right)(V-b)=R T$ where $\mathrm{P}, \mathrm{V} \& \mathrm{~T}$ represents pressure, volume \& temp. respectively.
11. A calories is a unit of heat and it equals 4.2 J where $1 \mathrm{~J}=1 \mathrm{kgm}^{2} \mathrm{~s}^{-2}$. Suppose we employ a system $0 f$ units in which the unit of mass equals to $\alpha \mathrm{kg}$, the unit of length equals $\beta \mathrm{m}$, the unit of time is γ s . Show that a calories has a magnitude of $4.2 \alpha^{-1} \beta^{-2} \gamma^{2}$ in terms of the new units.
12. If the units of force, energy and velocity are $10 \mathrm{~N}, 100 \mathrm{~J}$ and $5 \mathrm{~m} / \mathrm{s}$, find the units of mass, length and time.

