Practice Assignment

1. Verify dimensionally the relation $t=2 \pi \sqrt{\frac{l}{g}}$ for the time period of a simple pendulum. Here I is the length of the pendulum and g is acceleration due to gravity. [Correct]
2. The frequency v of a string of length I vibrating under tension F is given by $\mathrm{v}=\frac{1}{21} \sqrt{\frac{\mathrm{~F}}{\mathrm{~m}}}$, where m is the mass per unit length. Check whether the equation is correct or not.
3. Check the correctness of the relation: $\rho=\frac{3 g}{4 \pi r G}$
4. The escape velocity v of a body depends upon: (i) the acceleration due to gravity (g) of the planet, (ii) the radius (R) of the planet. Establish dimensionally the relation between them.

$$
[v=k \sqrt{g R}]
$$

5. A body of mass m is moving in a circle of radius r with angular velocity ω. Find the expression for centripetal force acting on it using method of dimensional analysis.

$$
\left[\mathrm{F}=\mathrm{mr} \omega^{2}\right]
$$

6. The terminal velocity depends upon weight (mg) and radius r of a ball. It also depends upon the coefficient of viscosity η. By the method of dimensions, determine the relation expressing terminal velocity. $\left[v=k \frac{m g}{\mathrm{qr}}\right]$
7. The density of a material in cgs system is $8 \mathrm{gcm}^{-3}$. In a system of units, in which unit of length is 5 cm and unit of mass is 20 g , what is the density of material?
8. Young's modulus of steel is $19 \times 10^{10} \mathrm{Nm}^{-2}$. Express it in cgs units. [19×10^{11} dynecm ${ }^{-2}$]
9. When $1 \mathrm{~m}, 1 \mathrm{~kg}$ and 1 minute are taken as fundamental units, the magnitude of a force is 36 units. What is the value of this force on cgs system?
[10^{3} dyne]
