Laws of motion
 Worksheet -4

1. What is the unit of coefficient of friction?

Ans. No unit
2. Name the factor on which coefficient of friction depends?

Ans. Nature of surfaces in contact
3. What provides the centripetal force to a car taking a turn on a level road?

Ans. force of friction between the tyres and the road
4. Give the magnitude and direction of the net force acting on
(a) A drop of rain falling down with constant speed.
(b) A kite skillfully held stationary in the sky.

Ans. $\mathrm{F}=0$ as $\mathrm{a}=0$ in both the cases
5. Two blocks of masses m_{1}, m_{2} are connected by light spring on a smooth horizontal surface. The two masses are pulled apart and then released. Prove that the ratio of their acceleration is inversely proportional to their masses.
Ans. $F_{1}=-F_{2}$
$m_{1} a_{1}=-m_{2} a_{2}$
$\frac{a_{1}}{a_{2}}=-\frac{m_{2}}{m_{1}}$
6. A shell of mass 0.02 kg is fired by a gun of mass 100 kg . If the muzzle speed of the shell is $80 \mathrm{~m} / \mathrm{s}$, what is the recoil speed of the gun?
Ans. $\quad m_{1} u_{1}+m_{2} u_{2}=m_{1} v_{1}+m_{2} v_{2}$
$100 \times 0+0.02 \times 0=100 \times v_{1}+0.02 \times 80$
$0=100 v_{1}+1.6$
$v_{1}=\frac{-1.6}{100}=-0.0016 \mathrm{~ms}^{-1}$
7. A train runs along an unbanked circular bend of radius 30 m at a speed of $54 \mathrm{~km} / \mathrm{hr}$. The mass of the train is 106 kg . What provides the necessary centripetal force required for this purpose? The engine or the rails? What is the angle of banking required to prevent wearing out of the rail?
Ans. - Lateral force acting due to rails on the wheels of the train.

- Outer rails
-

$$
\begin{aligned}
\tan \theta & =\frac{v^{2}}{r g} \\
& =\frac{15^{2}}{30 \times 10} \\
\theta & =\tan ^{-1}\left(\frac{3}{4}\right)
\end{aligned}
$$

What is the acceleration of the blocks? What is the net force on the block P? What force does P apply on Q. ? What force does Q apply on R ?
Ans. -

$$
F=3 m a
$$

$$
a=\frac{F}{3 m}
$$

- $F_{1}=m a=m \times \frac{F}{3 m}=\frac{F}{3}$
- $F_{2}=2 m a=2 m \times \frac{F}{3 m}=\frac{2 F}{3}$
- $F_{3}=m a=m \times \frac{F}{3 m}=\frac{F}{3}$

9. (a) Define impulse. State its S.I. unit?
(b) State and prove impulse momentum theorem?

Ans.

