Class XI

Oscillations and waves worksheet 4

1.	What is the relation between uniform circular motion and S.H.M?	1
Ans.	Uniform circular motion can be thought of as two S.H.M operating at right angle to each other.	
2.	What is the minimum condition for a system to execute S.H.M?	1
Ans.	The minimum condition for a body to posses S.H.M. is that it must have elasticity and inertia.	
3.	A particle executing S.H.M. along a straight line has a velocity of $\mathrm{u} \mathrm{m} / \mathrm{s}$ when its displacement from mean position is 3 m and $3 \mathrm{~m} / \mathrm{s}$ when displacement is 4 m . Find the time taken to travel 2.5 m from the positive extremity of its oscillation?	1
Ans.	$\begin{aligned} & v_{1}^{2}=\omega^{2}\left(a^{2}-y_{1}^{2}\right) \\ & 16=\omega^{2}\left(a^{2}-3^{2}\right) \quad \longrightarrow(1) \\ & v_{2}^{2}=\omega^{2}\left(a^{2}-y_{2}^{2}\right) \\ & 9=\omega^{2}\left(a^{2}-4^{2}\right) \quad \longrightarrow(2) \\ & (1) \div(2) \\ & \frac{16}{9}=\frac{\omega^{2}\left(a^{2}-9\right)}{\omega^{2}\left(a^{2}-16\right)} \\ & 16\left(a^{2}-16\right)=9\left(a^{2}-9\right) \\ & 16 a^{2}-256=9 a^{2}-81 \\ & 16 a^{2}-9 a^{2}=-81+256 \\ & 7 a^{2}=175 \\ & a^{2}=25 \\ & a=5 m \\ & \text { from }(1) \\ & 16=\omega^{2}\left(5^{2}-3^{2}\right) \\ & 16=\omega^{2} \times 16 \\ & \omega=1 \mathrm{rad} \cdot s^{-1} \end{aligned}$ When the particle is 2.5 m from the positive extreme position, its displacement from the mean position, $y=5-2.5=2.5 \mathrm{~m}$. Since the time is measured when the particle is at extreme position $\begin{aligned} & y=a \cos \omega t \\ & 2.5=5 \cos t \\ & \frac{1}{2}=\cos t \\ & \frac{\pi}{3}=t \\ & \frac{3.14}{3}=t \\ & t=1.047 s \end{aligned}$	

4.	Springs is spring constant $\mathrm{K}, 2 \mathrm{~K}, 4 \mathrm{~K},----$ are connected in series. A mass M Kg is attached to the lower end of the last spring and system is allowed to vibrate. What is the time period of oscillation?	1
Ans.	$\begin{aligned} & \frac{1}{K}=\frac{1}{k_{1}}+\frac{1}{k_{2}}+---- \\ & \frac{1}{K}=\frac{1}{k}+\frac{1}{2 k}+\frac{1}{4 k}+\frac{1}{8 k}+---- \\ & \frac{1}{K}=\frac{1}{k}\left[1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+---\right] \\ & \frac{1}{K}=\frac{1}{k}\left[\frac{1}{1-\frac{1}{2}}\right] \\ & \frac{1}{K}=\frac{2}{k} \\ & K=\frac{k}{2} \\ & T=2 \pi \sqrt{\frac{M}{K}}=2 \pi \sqrt{\frac{M}{\frac{k}{2}}}=2 \pi \sqrt{\frac{2 M}{k}} \end{aligned}$	
5.	A particle is moving with SHM in a straight line. When the distance of the particle from mean position has values x_{1} and x_{2} the corresponding values of velocities are v_{1} and v_{2}. Show that the time period of oscillation is given by: $T=2 \pi\left[\frac{x_{2}^{2}-x_{1}^{2}}{v_{1}^{2}-v_{2}^{2}}\right]^{1 / 2}$	2

Ans.	$\begin{align*} & v_{1}^{2}=\omega^{2}\left(a^{2}-x_{1}^{2}\right) \tag{1}\\ & v_{2}^{2}=\omega^{2}\left(a^{2}-x_{2}^{2}\right) \tag{2} \end{align*}$ (1) $-(2)$ $\begin{aligned} & \begin{aligned} v_{1}^{2}-v_{2}^{2} & =\omega^{2}\left(a^{2}-x_{1}^{2}\right)-\omega^{2}\left(a^{2}-x_{2}^{2}\right) \\ & =\omega^{2}\left[a^{2}-x_{1}^{2}-a^{2}+x_{2}^{2}\right] \\ & =\omega^{2}\left(x_{2}^{2}-x_{1}^{2}\right) \end{aligned} \\ & \begin{aligned} & \omega^{2}= \frac{\left(v_{1}^{2}-v_{2}^{2}\right)}{\left(x_{2}^{2}-x_{1}^{2}\right)} \\ & \omega=\left[\frac{\left(v_{1}^{2}-v_{2}^{2}\right)}{\left(x_{2}^{2}-x_{1}^{2}\right)}\right]^{\frac{1}{2}} \end{aligned} \\ & \frac{2 \pi}{T}=\left[\frac{\left(v_{1}^{2}-v_{2}^{2}\right)}{\left(x_{2}^{2}-x_{1}^{2}\right)}\right]^{\frac{1}{2}} \\ & T=2 \pi\left[\frac{\left(x_{2}^{2}-x_{1}^{2}\right)}{\left(v_{1}^{2}-v_{2}^{2}\right)}\right]^{\frac{1}{2}} \end{aligned}$	
6.	Show that the total energy of a body executing SHM is independent of time?	2
Ans.		
7.	A particles moves such that its acceleration ' a ' is given by $\mathrm{a}=-\mathrm{b} \mathrm{x}$ where $\mathrm{x}=$ displacement from equilibrium position and b is a constant. Find the period of oscillation?	2
Ans.	$a=-b x$ As $a \alpha x$ and is directed towards mean position so the particle executes S. H. M $a=b x$ (magnitude) $\begin{aligned} \frac{a}{x} & =\frac{1}{b} \\ T & =2 \pi \sqrt{\frac{x}{a}}=2 \pi \sqrt{\frac{1}{b}} \end{aligned}$	
8.	A particle is S.H.M. is described by the displacement function: $x=a \cos (w t+\phi)$ If the initial $(t=0)$ position of the particle is 1 cm , angular frequency is π / s and its initial velocity is π cm / s, What are its amplitude and phase angle?	3

Ans.	$t=0$	
	$x=1$	
	$v=\pi$ ms $^{-1}$	
	$x=a \cos (\omega t+\phi)$	
$1=a \cos (\omega(0)+\phi)$		
$1=a \cos \phi \longrightarrow(1)$		
	$v=\frac{d x}{d t}$	
	$v=-a \omega \sin (\omega t+\phi)$	
	$\pi=-a(\pi) \sin (\omega(0)+\phi)$	
	$-1=a \sin \phi \longrightarrow(2)$	
	$(1)^{2}+(2)^{2}$	
	$1+1=a^{2}\left(\cos ^{2} \phi+\sin ^{2} \phi\right)$	
	$a^{2}=2$	
	$a=\sqrt{2} c m$	
	$(2) \div(1)$	
	$\tan \phi=-1$	
	$\phi=\tan (-1)$	
9.	Determine the time period of a simple pendulum of length $=1$ when mass of bob $=\mathrm{m} \mathrm{Kg} ?$	
Ans.	Prove $T=2 \pi \sqrt{\frac{l}{g}}$	3

