<u>Class XI</u>

Oscillations and waves worksheet 4

	Oscillations and waves worksheet +	
1.	What is the relation between uniform circular motion and S.H.M?	1
Ans.	Uniform circular motion can be thought of as two S.H.M operating at right angle to each other.	
2.	What is the minimum condition for a system to execute S.H.M?	1
Ans.	The minimum condition for a body to posses S.H.M. is that it must have elasticity and inertia.	
3.	A particle executing S.H.M. along a straight line has a velocity of u m/s when its displacement from mean position is 3 m and 3 m/s when displacement is 4m. Find the time taken to travel 2.5 m from the	1
	positive extremity of its oscillation?	
Ans.	$v_1^2 = \omega^2 (a^2 - y_1^2)$	
	$16 = \omega^2 (a^2 - 3^2) \longrightarrow (1)$	
	$v_2^2 = \omega^2 (a^2 - y_2^2)$	
	$9 = \omega^2 (a^2 - 4^2) \longrightarrow (2)$	
	$(1) \div (2)$	
	$\frac{16}{9} = \frac{\omega^2 (a^2 - 9)}{\omega^2 (a^2 - 16)}$	
	$16(a^2 - 16) = 9(a^2 - 9)$	
	$16a^2 - 256 = 9a^2 - 81$	
	$16a^2 - 9a^2 = -81 + 256$	
	$7a^2 = 175$	
	$a^2 = 25$	
	a = 5m	
	<i>from</i> (1)	
	$16 = \omega^2 (5^2 - 3^2)$	
	$16 = \omega^2 \times 16$	
	$\omega = 1 \ rad.s^{-1}$	
	When the particle is 2.5m from the positive extreme position, its displacement from the mean position,	
	y = 5 - 2.5 = 2.5 m. Since the time is measured when the particle is at extreme position $y = a \cos \omega t$	
	$2.5 = 5\cos t$	
	$\frac{1}{2} = \cos t$	
	$\frac{\pi}{3} = t$	
	$\frac{3.14}{3} = t$	
	t = 1.047s	

4.	Springs is spring constant K, 2K, 4K, are connected in series. A mass M Kg is attached to the lower end of the last spring and system is allowed to vibrate. What is the time period of oscillation?	1
Ans.	$\frac{1}{K} = \frac{1}{k_1} + \frac{1}{k_2} + \dots - \dots$	
	$\frac{1}{K} = \frac{1}{k} + \frac{1}{2k} + \frac{1}{4k} + \frac{1}{8k} + \dots - \dots$	
	$\frac{1}{K} = \frac{1}{k} \left[1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots \right]$	
	$\frac{1}{K} = \frac{1}{k} \left[\frac{1}{1 - \frac{1}{2}} \right]$	
	$\frac{1}{K} = \frac{2}{k}$	
	$K = \frac{k}{2}$	
	$T = 2\pi \sqrt{\frac{M}{K}} = 2\pi \sqrt{\frac{M}{\frac{k}{2}}} = 2\pi \sqrt{\frac{2M}{k}}$	
5.	A particle is moving with SHM in a straight line. When the distance of the particle from mean position has values x_1 and x_2 the corresponding values of velocities are v_1 and v_2 . Show that the time period of	2
	oscillation is given by: $T = 2\pi \left[\frac{x_2^2 - x_1^2}{v_1^2 - v_2^2} \right]^{1/2}$	

Ans.	$v_1^2 = \omega^2 (a^2 - x_1^2) \longrightarrow (1)$	
	$v_2^2 = \omega^2 (a^2 - x_2^2) \longrightarrow (2)$	
	(1) - (2)	
	$v_1^2 - v_2^2 = \omega^2 (a^2 - x_1^2) - \omega^2 (a^2 - x_2^2)$	
	$=\omega^{2} \left[a^{2} - x_{1}^{2} - a^{2} + x_{2}^{2} \right]$	
	$=\omega^2\left(x_2^2-x_1^2\right)$	
	$\omega^{2} = \frac{\left(v_{1}^{2} - v_{2}^{2}\right)}{\left(x_{2}^{2} - x_{1}^{2}\right)}$	
	$\omega = \left[\frac{\left(v_1^2 - v_2^2\right)}{\left(x_2^2 - x_1^2\right)}\right]^{\frac{1}{2}}$	
	$\frac{2\pi}{T} = \left[\frac{\left(v_1^2 - v_2^2\right)}{\left(x_2^2 - x_1^2\right)}\right]^{\frac{1}{2}}$	
	$T = 2\pi \left[\frac{\left(x_2^2 - x_1^2\right)}{\left(v_1^2 - v_2^2\right)} \right]^{\frac{1}{2}}$	
6.	Show that the total energy of a body executing SHM is independent of time?	2
Ans.		
7.	A particles moves such that its acceleration 'a' is given by $a = -b x$ where $x = displacement$ from equilibrium position and b is a constant. Find the period of oscillation?	2
Ans.	a = -bx	
	As $a \alpha x$ and is directed towards mean position so the particle executes S. H. M	
	$a = bx \ (magnitude)$	
	$\frac{a}{1} = \frac{1}{1}$	
	$x^{-}b$	
	$T = 2\pi \sqrt{\frac{x}{a}} = 2\pi \sqrt{\frac{1}{b}}$	
8.	A particle is S.H.M. is described by the displacement function: $x = a\cos(wt + \phi)$	3
	If the initial (t = 0) position of the particle is 1 cm, angular frequency is π /s and its initial velocity is π cm/s, What are its amplitude and phase angle?	

Ans.	t = 0	
	x = 1	
	$v = \pi m s^{-1}$	
	$x = a\cos(\omega t + \phi)$	
	$1 = a\cos(\omega(0) + \phi)$	
	$1 = a \cos \phi \longrightarrow (1)$	
	$v = \frac{dx}{dt}$	
	$v = -a\omega\sin(\omega t + \phi)$	
	$\pi = -a(\pi)\sin(\omega(0) + \phi)$	
	$-1 = a \sin \phi \longrightarrow (2)$	
	$(1)^2 + (2)^2$	
	$1+1 = a^2(\cos^2\phi + \sin^2\phi)$	
	$a^2 = 2$	
	$a = \sqrt{2}cm$	
	$(2) \div (1)$	
	$\tan \phi = -1$	
	$\phi = \tan^{-1}(-1)$	
9.	Determine the time period of a simple pendulum of $length = l$ when mass of bob = m Kg?	3
Ans.	Prove $T = 2\pi \sqrt{\frac{l}{g}}$	