Class XI

Oscillations and waves worksheet 2

1. Is the motion of a simple pendulum strictly simple harmonic?

Ans. It is not strictly simple harmonic because we make the assumption that $\sin \theta=\theta$, which is nearly valid only if θ is very small.
2. Can a simple pendulum experiment be done inside a satellite?

Ans. time period of a simple pendulum is $T=2 \pi \sqrt{\frac{l}{g}}$
Since, inside a satellite, effective value of $\mathrm{g}=0$ so, $\mathrm{T}=\infty$.
i.e. inside the satellite, the pendulum does not oscillate at all.

So, it can't be preformed inside a satellite.
3. Give some practical examples of S. H. M?

Ans. 1) Motion of piston in a gas - filled cylinder.
2) Atoms vibrating in a crystal lattice.
3) Motion of helical spring.
4. The time period of a body suspended by a spring is T. What will be the new time period if the spring is 2 cut into two equal parts and 1) the body is suspended by one part. 2) Suspended by both parts in parallel?
Ans. $\quad T=2 \pi \sqrt{\frac{m}{k}} \quad[k-$ force const. $]$

1) On cutting the spring in two equal parts, the length of one part is halved and the force constant of each part will be doubled (2 k).

$$
T_{1}=2 \pi \sqrt{\frac{m}{2 k}}=\frac{T}{\sqrt{2}}
$$

2) If the body is suspended from both parts in parallel, then the effective force constant of parallel combination $=2 \mathrm{k}+2 \mathrm{k}=4 \mathrm{k}$.

$$
T_{2}=2 \pi \sqrt{\frac{m}{4 k}}=\frac{T}{2}
$$

5. A simple pendulum is executing Simple harmonic motion with a time T. If the length of the pendulum is 2 increased by 21%. Find the increase in its time period?

Ans.

$$
\begin{aligned}
& l_{2}=l_{1}+\frac{21}{100} l_{1}=\frac{121}{100} l_{1}=1.21 l_{1} \\
& T=2 \pi \sqrt{\frac{l}{g}} \\
& T_{1}=2 \pi \sqrt{\frac{l_{1}}{g}} \\
& T_{2}=2 \pi \sqrt{\frac{l_{2}}{g}} \\
& \frac{T_{1}}{T_{2}}=\sqrt{\frac{l_{1}}{l_{2}}} \\
& =\sqrt{\frac{l_{1}}{1.21 l_{1}}} \\
& T_{2}=1.1 T_{1}=1.1 T \quad\left[\because T_{1}=T\right] \\
& \% \text { increase in time period }=\frac{T_{2}-T_{1}}{T_{1}} \times 100 \% \\
& \begin{array}{l}
=\frac{1.1 T-T}{T} \times 100 \% \\
=0.1 \times 100 \% \\
=10 \%
\end{array}
\end{aligned}
$$

6. A particle is executing S H M of amplitude 4 cm and $\mathrm{T}=4 \mathrm{sec}$. find the time taken by it to move from positive extreme position to half of its amplitude?
Ans. $\quad a=4 m$
$y=\frac{a}{2}=2 m$
$T=4 \mathrm{sec}$
$y=a \cos w t=a \cos \frac{2 \pi}{T} t$
$2=4 \cos \frac{2 \pi}{4} t$
$\frac{1}{2}=\cos \frac{2 \pi}{4} t$
$60=\frac{2 \pi}{4} t$
$t=\frac{120}{\pi} s$
7. Two linear simple harmonic motions of equal amplitudes and angular frequency w and 2 w are impressed on a particle along axis X and Y respectively. If the initial phase difference between them is $\pi / 2$, find the resultant path followed by the particle?

Ans. $\quad x=a \sin w t$

$$
\begin{aligned}
y & =a \sin \left(2 w t+\frac{\pi}{2}\right) \\
& =a \cos 2 w t \\
& =a\left(1-2 \sin ^{2} w t\right) \\
& =a\left(1-\frac{2 x^{2}}{a^{2}}\right) \\
y & =a-\frac{2 x^{2}}{a} \\
\frac{2 x^{2}}{a} & =a-y \\
2 x^{2} & =a^{2}-a y \\
x^{2} & =\frac{a^{2}}{2}-\frac{a}{2} y
\end{aligned}
$$

8. The acceleration due to gravity on the surface of moon is $1.7 \mathrm{~m} / \mathrm{s}^{2}$. What is the time period of simple pendulum on moon if its time period on the earth is 3.5 s ?
Ans. $\quad g=9.8 m s^{-2}$

$$
g^{\prime}=1.7 \mathrm{~ms}^{-2}
$$

$$
T_{E}=2 \pi \sqrt{\frac{l}{g}}
$$

$$
T_{M}=2 \pi \sqrt{\frac{l}{g^{\prime}}}
$$

$$
\frac{T_{E}}{T_{M}}=\sqrt{\frac{g^{\prime}}{g}}
$$

$$
\frac{3.5}{T_{M}}=\sqrt{\frac{1.7}{9.8}}
$$

$T_{M}=8.4 \mathrm{~s}$
9. Using the correspondence of S. H. M. and uniform circular motion, find displacement, velocity, amplitude, time period and frequency of a particle executing SH.M?
Ans.

