Class XI
 Gravitation 1

1. On which fundamental law of physics is Kepler's second law is based?
2. Which is greater the attraction of the earth for 1 kg of aluminum or aluminum or attraction of 1 kg of aluminum for the earth?
3. Distance between two bodies is increased to three times its original value. What is the effect on the gravitational force between them?
4. The distance of the planet Jupiter from the sun is 5.2 times that of the earth. Find the period of the Jupiter's revolution around the sun?
5. Show that for a two particle system $\vec{F}_{12}=-\vec{F}_{21}$
6. State two essential requisites of geostationary satellite? 2
7. Show that an artificial satellite circling round the earth in an orbit of radius obeys keeper's third law? 2
$8 \quad$ A 400 kg satellite in a circular orbit of radius 2 Re about the earth calculate the kinetic energy, 3 potential energy and total energy of the satellite? $R_{E}=6.4 \times 10^{6} \mathrm{~m}, \mathrm{M}=6 \times 10^{24} \mathrm{~kg}$
8. Two uniform solid spheres of radii R and 2 R are at rest with their surfaces just touching. Find the force of gravitational attraction between them if density of spheres be P?
9. Find expressions for (1) potential energy (2) kinetic energy (3) total energy for an artificial satellite. 3

Class XI

Gravitation 2

1. The gravitational force between two blocks is F what would happen if a mass of both the blocks as well as distance between them is doubled?
2. A body is weightless at the centre of earth. Why?
3. Where will a body weigh more at Delhi or at Shimla? Why? 1
4. Find an expression for the weight of a body at the centre of the earth? 1
5. Find an expression for gravitational intensity due to earth at a point on its free surface. 2
6. The earth's mass is 80 times that of moon and their diameters are in the ratio $4: 1$ respectively. What 2 is the value of g on moon?
7. Determine the value of g at the bottom of an ocean 7 km deep Given that radius of earth is $6370 \mathrm{~km} \quad 1$ and $\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$.
$8 \quad$ Show that value of g at a height h is same as the value of acceleration due of gravity at a depth $d=2 h \quad 2$
8. If T be the period of satellite revolving just above the surface of a planet whose average density is $\mathrm{p}, 2$ show that PT^{2} is a universal constant.
9. Define Gravitational potential energy Hence deduces an expression for gravitational potential energy 3 of a body placed at a point sear the surface of earth?

Class XI
 Gravitation 3

1. Why is gravitational potential energy always negative? 1
2. At what height above the surface of the earth value of acceleration due to gravity is reduced to one 2 fourth of its value on the surface of the earth?
3. Name two factors which determine whether a planet has atmosphere or not? 1
4. What is Kepler's law of periods? Show it mathematically? 2
5. With two characteristics of gravitational force? 2
6. Assuming earth to be a uniform sphere finds an expression for density of earth in terms of g and G ? 2
7. If radius of earth is 6400 km , what will be the weight of 1 quintal body if taken to the height of $1600 \quad 2$ km above the sea level?
8 A satellite is revolving is a circular path close to a planet of density ρ. find an expression for its period of revolution?
8. How far away from the surface of earth does the value of g is reduced to 4% of its value on the surface of the earth Given radius of earth $=6400 \mathrm{~km}$
9. Obtain on expression showing variation of acceleration due to gravity with height?
