Gravitation

Worksheet -2

1. The gravitational force between two blocks is F what would happen if a mass of both the blocks as well as distance between them is doubled?
Ans.

$$
\begin{aligned}
& F=G \frac{m_{1} m_{2}}{r^{2}} \\
& m_{1}^{\prime}=2 m_{1}, m_{2}{ }^{\prime}=2 m_{2} \\
& r^{\prime}=2 r \\
& F^{\prime}=G \frac{m_{1}{ }^{\prime} m_{2}{ }^{\prime}}{\left(r^{\prime}\right)^{2}}=G \frac{2 m_{1} \times 2 m_{2}}{(2 r)^{2}}=G \frac{4 m_{1} m_{2}}{4 r^{2}}=G \frac{m_{1} m_{2}}{r^{2}}=F
\end{aligned}
$$

2. A body is weightless at the centre of earth. Why?

Ans. At the centre of earth $\mathrm{g}=0$ so $\mathrm{W}=\mathrm{mg}=0$
3. Where will a body weigh more at Delhi or at Shimla? Why?

Ans. Delhi because at higher altitudes the value of g decreases.
4. Find an expression for the weight of a body at the centre of the earth?

Ans.
Value of g at a depth is $g^{\prime}=g\left(1-\frac{h}{R}\right)$
At the centre of earth $\mathrm{h}=\mathrm{R}$ so $g^{\prime}=g\left(1-\frac{R}{R}\right)=0$
So, weight of a body at the centre of earth is $W=m g^{\prime}=0$
5. Find an expression for gravitational intensity due to earth at a point on its free surface.

Ans.
The gravitational force exerted on an object of mass ' m ' on earth is $F=G \frac{M m}{R^{2}}$
Gravitational intensity due to earth at a point on its free surface is
$I=\frac{F}{m}=\frac{\frac{G M m}{R^{2}}}{m}=\frac{G M}{R^{2}}$
6. The earth's mass is 80 times that of moon and their diameters are in the ratio $4: 1$ respectively. What is the value of g on moon?
Ans.

$$
\begin{aligned}
& g_{E}=\frac{G M_{E}}{R_{E}^{2}}, \quad g_{M}=\frac{G M_{M}}{R_{M}^{2}} \\
& \frac{g_{M}}{g_{E}}=\frac{\frac{G M_{M}}{R_{M}^{2}}}{\frac{G M_{E}}{R_{E}^{2}}}=\frac{M_{M}}{M_{E}} \times \frac{R_{E}^{2}}{R_{M}^{2}}=\frac{M_{M}}{80 M_{M}} \times \frac{16 R_{M}^{2}}{R_{M}^{2}} \\
& \frac{g_{M}}{9.8}=\frac{1}{5} \\
& g_{M}=1.96 \mathrm{~ms}^{-2}
\end{aligned}
$$

7. Determine the value of g at the bottom of an ocean 7 km deep Given that radius of earth is 6370 km and $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$.

Ans.

$$
g^{\prime}=g\left(1-\frac{h}{R}\right)=9.8\left(1-\frac{7}{6370}\right)=\frac{9.8 \times 6363}{6370}=9.79 \mathrm{~ms}^{-2}
$$

8 Show that value of g at a height h is same as the value of acceleration due of gravity at a depth $d=2 h \quad 2$
Ans. Value of g at a height is $g^{\prime}=g\left(1-\frac{2 h}{R}\right)$
Value of g at a depth is $g^{\prime}=g\left(1-\frac{d}{R}\right)$
On comparing we get
$g\left(1-\frac{2 h}{R}\right)=g\left(1-\frac{d}{R}\right)$
$d=2 h$
9. If T be the period of satellite revolving just above the surface of a planet whose average density is $\mathrm{p}, \quad 2$ show that PT^{2} is a universal constant.
Ans.
$T=\sqrt{\frac{3 \pi}{G \rho}}$
$T^{2}=\frac{3 \pi}{G \rho}$
$\rho T^{2}=\frac{3 \pi}{G}$
$\rho T^{2}=$ const .
10. Define Gravitational potential energy Hence deduces an expression for gravitational potential energy of a body placed at a point sear the surface of earth?
Ans.

