NCERT ANSWERS

CHAPTER 9

1. A steel wire of length 4.7 m and cross-sectional area $3 \times 10^{-5} \mathrm{~m}^{2}$ stretches by the same amount as a copper wire of length 3.5 m and cross-sectional area of $4 \times 10^{-5} \mathrm{~m}^{2}$ under a given load. What is the ratio of the Young's modulus of steel to that of copper?

Ans.

$$
\frac{Y_{S}}{Y_{C}}=\frac{\frac{F_{S} L_{S}}{A_{S} \Delta L_{S}}}{\frac{F_{C} L_{C}}{A_{C} \Delta L_{C}}}=\frac{F_{S} L_{S}}{A_{S} \Delta L_{S}} \times \frac{A_{C} \Delta L_{S}}{F_{C} L_{C}}=\frac{F \times 4.7}{3 \times 10^{5} \times \Delta L} \times \frac{4 \times 10^{5} \times \Delta L}{F \times 3.5}=1.79: 1
$$

2.

Figure shows the strain-stress curve for a given material. What
(a) Young's modulus and
(b) approximate yield strength for this material?

Ans.
(a) $Y=\frac{\text { stress }}{\text { strain }}=\frac{150 \times 10^{6}}{0.002}=7.5 \times 10^{10} \mathrm{Nm}^{-2}$
(b) Yield strength (max. stress that the material can sustain without crossing the elastic limit): $300 \times 10^{6} \mathrm{Nm}^{-2}$
3.
 shown in Fig.

(b) Wh of the two is the stronger material?

Ans.
(a) $Y=\frac{\text { stress }}{\text { strain }}$

For a given strain, $Y \alpha$ stress
Here stress A $>$ Stress B hence, $Y_{A}>Y_{B}$
(b) A is stronger than B as its fracture point is more than the fracture point of B .
4. Read the following two statements below carefully and state, with reasons, if it is true or false.
(a) The Young's modulus of rubber is greater than that of steel;
(b) The stretching of a coil is determined by its shear modulus.

Ans. (a) False
Reason: for a constant stress, $Y \propto \frac{1}{\text { strain }}$
Strain in rubber > strain in steel
So, $Y_{S}>Y_{R}$
(b) True

Reason: $G=\frac{\text { tangential stress }}{\text { shearing strain }}$
Stretching a body changes the shape i.e. shearing strain which in turn depends on shear modulus.
5.

Ans.

For steel wire Young's modulus, $Y_{S}=2 \times 10^{11} \mathrm{Nm}^{-2}$	For brass wire
Diameter of wire, $D_{S}=0.25 \mathrm{~cm}=25 \times 10^{-4} \mathrm{~m}$	
Radius of wire, $r_{S}=0.125 \mathrm{~cm}=12.5 \times 10^{-4} \mathrm{~m}$	Young's modulus, $Y_{B}=0.91 \times 10^{11} \mathrm{Nm}^{-2}$
Length of wire, $L_{S}=1.5 \mathrm{~m}$	Diameter of wire, $D_{S}=0.25 \mathrm{~cm}=25 \times 10^{-4} \mathrm{~m}$
Force on wire, $F_{S}=(4 \neq 6) \times 9.8=98 \mathrm{~N}$	Length of wire, $L_{B}=1 \mathrm{~m}$
$\Delta l_{S}=\frac{F_{S} L_{S}}{A_{S} Y_{S}}=\frac{98 \times 1.5}{3.14 \times 12.5 \times 12.5 \times 10^{-8} \times 2 \times 10^{11}}=1.49 \times 10^{-4} \mathrm{~m}$	$\Delta I_{B}=\frac{F_{B} L_{B}}{A_{B} Y_{B}}=\frac{12.5 \times 10^{-4} \mathrm{~m}}{3.14 \times 12.5 \times 12.5 \times 10^{-8} \times 0.91 \times 10^{11}}=1.3 \times 10^{-4} \mathrm{~m}$

6. The edge of an aluminium cube is 10 cm long. One face of the cube is firmly fixed to a vertical wall. A mass of 100 kg is then attached to the opposite face of the cube. The shear modulus of aluminium is 25 GPa . What is the vertical deflection of this face?

Ans. \quad Shearing stress $=\frac{F}{A}=\frac{100 \times 9.8}{0.1 \times 0.1}=9800 \mathrm{~N}$
Shearing strain $=\frac{\Delta l}{L}=\frac{\Delta l}{0.1}$
$G=\frac{\text { tangential stress }}{\text { shearing strain }}$
$25 \times 10^{9}=\frac{9800}{\frac{\Delta l}{0.1}}$
$\frac{\Delta l}{0.1}=\frac{9800}{25 \times 10^{9}}$
$\Delta l=3.92 \times 10^{-7} \mathrm{~m}$
7. Four identical hollow cylindrical columns of mild steel support a tructur forman $\geqslant 000 \mathrm{~kg}$. The inner and outer radii of each column are 30 and 60 cm respectively
 calculate the compressional strain of each column.

Ans.
Force on one column, $F=\frac{50000}{4} \times 9.8=122500 \mathrm{~N}$
Area of column, $A=\pi\left(R^{2}-r^{2}\right)=3.14\left(0.6^{2}-0.3^{2}\right)=0.8478 m^{2}$
Stress on column, stress $=\frac{122500}{0.8478}=144491.62 \mathrm{~N}$
Strain $=\frac{\text { stress }}{\text { modulus of elasticity }}=\frac{144491.62}{2 \times 10^{11}}=7.22 \times 10^{-7}$
8. A piece of coppe vin a rectangular ss-section of $15.2 \mathrm{~mm} \times 19.1 \mathrm{~mm}$ is pulled in tension with 44,500

N force, producing on ration. Calculate the resulting strain?
Ans. Force, $F=44500 \mathrm{~N}$
Area, $A=l b=15.2 \times 10^{-3} \times 19.1 \times 10^{-3}=2.9 \times 10^{-4} \mathrm{~m}^{2}$

Strain $=\frac{\text { stress }}{\text { modylus of elasticity }}=\frac{144491.62}{2 \times 10^{11}}=7.22 \times 10^{-7}$
9. A steel cable with a radius of 1.5 cm supports a chairlift at a ski area. If the maximum stress is not to exceed $108 \mathrm{~N} \mathrm{~m}^{-2}$, what is the maximum load the cable can support?

Ans.

$$
\text { Stress }=\frac{\text { Force }}{\text { Area }}
$$

Max. Force, $F=10^{8} \times 3.14 \times 0.015 \times 0.015=7.065 \times 10^{4} N$
10. A rigid bar of mass 15 kg is supported symmetrically by three wires each 2.0 m long. Those at each end are of copper and the middle one is of iron. Determine the ratios of their diameters if each is to have the same tension.

Ans. - Extension in each wire is same as same tension is acting on all the wires.

- Strain is same as all the wires are of same length

So, $Y=\frac{\frac{F}{A}}{\text { strain }}=\frac{4 F}{\pi d^{2}}$ becomes $Y \propto \frac{1}{d^{2}}$
$\frac{d_{1}}{d_{2}}=\sqrt{\frac{Y_{2}}{Y_{1}}}=\sqrt{\frac{110 \times 10^{9}}{190 \times 10^{9}}}=\sqrt{\frac{11}{19}}=1: 1.31$
11. A 14.5 kg mass, fastened to the end of a steel wire of unstretched with an angular velocity of $2 \mathrm{rev} / \mathrm{s}$ at the bottom of the circle. cm^{2}. Calculate the elongation of the wire when the mass is at

Ans. Total force, $F=m g+m l \omega^{2}=14.5 \times 9.8+14.5 \times 1 \times 2^{2}=200.1 N$
$Y=\frac{F L}{A \Delta L}$
$2 \times 10^{11}=\frac{200.1 \times 1}{0.065 \times 10^{-4} \times \Delta L}$
$\Delta L=1.539 \times 10^{-4} \mathrm{~m}$
12. Compute the bulk mo lus of water from the followin data: Initial volume $=100$ litre, Pressure increase $=$ $100 \mathrm{~atm}\left(1 \mathrm{~atm}=1.01 \leqslant 10^{5} \mathrm{~Pa}\right)$, Final volume $=100.5$ litre. Compare the bulk modulus of water with that of air (at constan mp are). Explain in simple terms why the ratio is so large.
Ans. - Change in volume $\Delta V=V_{2}-V_{1}=100.5 \times 10^{-3}-100 \times 10^{-3}=0.5 \times 10^{-3} \mathrm{~m}^{3}$

- Ratio is very high because air is more compressible than water.

13. What is the density of water at a depth where pressure is 80 atm , given that its density at the surface is $1.03 \times$ $10^{3} \mathrm{~kg} \mathrm{~m}^{-3}$?
Ans. Let the given depth be h.
Pressure at the given depth, $p=80.0 \mathrm{~atm}=80 \times 1.01 \times 10{ }_{5} \mathrm{~Pa}$

Density of water at the surface, $\rho_{1}=1.03 \times 10_{3} \mathrm{~kg} \mathrm{~m}-3$
Let ρ_{2} be the density of water at the depth h.
Let V_{1} be the volume of water of mass m at the surface and V_{2} be the volume of water at the depth h.
Change in volume, $\Delta V=V_{1}-V_{2}=\frac{m}{\rho_{1}}-\frac{m}{\rho_{2}}=m\left(\frac{1}{\rho_{1}}-\frac{1}{\rho_{2}}\right)$
Volumetric strain, $\frac{\Delta V}{V_{1}}=\frac{m\left(\frac{1}{\rho_{1}}-\frac{1}{\rho_{2}}\right)}{\frac{m}{\rho_{1}}}=\rho_{1}\left(\frac{1}{\rho_{1}}-\frac{1}{\rho_{2}}\right)=1-\frac{\rho_{1}}{\rho_{2}}$
Now, $B=\frac{P V_{1}}{\Delta V}$
$0.2 \times 10^{10}=\frac{80 \times 1.013 \times 10^{5}}{1-\frac{\rho_{1}}{\rho_{2}}}$
$1-\frac{\rho_{1}}{\rho_{2}}=4.05 \times 10^{-3}$
$\frac{\rho_{1}}{\rho_{2}}=1-4.05 \times 10^{-3}$
$\frac{1.03 \times 10^{3}}{\rho_{2}}=0.99595$
$\rho_{2}=1034 \mathrm{kgm}^{-3}$
14. Compute the fre tiona hange in volume of a glass slab, when subjected to a hydraulic pressure of 10 atm .

Ans.
$B=\frac{P V}{\Delta V}$
15. Det mitro volume c traction of a solid copper cube, 10 cm on an edge, when subjected to a hydraulic

Ans.

$$
\begin{aligned}
& B=\frac{P V}{\Delta V} \\
& B=\frac{P l^{3}}{\Delta V}
\end{aligned}
$$

$140 \times 10^{9}=\frac{7 \times 10^{6} \times(0.1)^{3}}{\Delta V}$
$\Delta V=5 \times 10^{-2} \mathrm{~cm}^{-3}$
16. How much should the pressure on a litre of water be changed to compress it by 0.10% ?

Ans.

$$
\begin{aligned}
& \frac{\Delta V}{V}=\frac{\frac{0.1}{100}}{1}=0.001 \\
& B=\frac{P V}{\Delta V} \\
& P=B \frac{\Delta V}{V}=2.2 \times 10^{9} \times 0.001=2.2 \times 10^{6} \mathrm{Nm}^{-2}
\end{aligned}
$$

