## NCERT ANSWERS

## CHAPTER 14

1. Which of the following examples represent periodic motion?
(a) A swimmer completing one (return) trip from one bank of a river to the other and back.
(b) A freely suspended bar magnet displaced from its N-S direction and released.
(c) A hydrogen molecule rotating about its center of mass.
(d) An arrow released from a bow.

Ans.
Case
(a) A swimmer completing one (return) trip from
one bank of a river to the other and back.
(b) A freely suspended bar magnet displaced from
its N-S direction and released.
(c) A hydrogen molecule rotating about its center
of mass.
(d) An arrow released from a bow
2. Which of the following examples represo ly) simp not simple harmonic motion?
(a) the rotation of earth about its axis.
(b) motion of an oscil ing mercury column in a U-tube.
(c) motion of a be ng inside a smooth curved bowl, when released from a point slightly above the lower most point.
(d) general vibrations on olyatomronolecule about its equilibrium position.

Ans.


P/SHM

SHM
SHM

## P

P Vibration of a polyatomic molecule is the superposition of individual SHMs of different molecules.
3. Figure depicts four $x-t$ plots for linear motion of a particle. Which of the plots

(a)

(c)
represent periodic motion? What is the period of motion
Ans.

|  | Motion of the particle repeats itself after 2 s. |
| :--- | :--- | :--- |
| Noriodic motion |  |
| Not a periodic motion. |  |
| It is a unidirectional, linear uniform motion. |  |

4. Which of theollowing functions of time represent (a) simple harmonic, (b) periodic but not simple harmonic, and (c) non-periodic motion? Give period for each case of periodic motion ( $\omega$ is any positive constant):
(a) $\sin \omega t-\cos \omega t$
(b) $\sin ^{3} \omega t$
(c) $3 \cos (\pi / 4-2 \omega t)$
(d) $\cos \omega t+\cos 3 \omega t+\cos 5 \omega t$
(e) $\exp \left(-\omega^{2} t^{2}\right)$
(f) $1+\omega t+\omega^{2} t^{2}$

Ans. (a) $\sin \omega t-\cos \omega t=\sqrt{2}\left[\frac{1}{\sqrt{2}} \sin \omega t-\frac{1}{\sqrt{2}} \cos \omega t\right]=\sqrt{2}\left[\cos \frac{\pi}{4} \sin \omega t-\sin \frac{\pi}{4} \cos \omega t\right]=\sqrt{2} \sin \left(\omega t-\frac{\pi}{4}\right)$
$\Rightarrow$ Function represents SHM as it is similar to $a \sin (\omega t+\phi)$
$>$ Period $: \frac{2 \pi}{\omega}$
(b) $\sin ^{3} \omega t=\frac{1}{2}[3 \sin \omega t-\sin 3 \omega t]$
$>$ Superposition of two $\mathrm{SHMs}(\sin \omega t, \sin 3 \omega t)$ is periodic motion not SHM.
(c) $3 \cos \left[\frac{\pi}{4}-2 \omega t\right]=3 \cos \left[2 \omega t-\frac{\pi}{4}\right]$
$>$ Function represents SHM as it is similar to $a \cos (\omega t+\phi)$
$>$ Period $: \frac{2 \pi}{2 \omega}=\frac{\pi}{\omega}$
(d) $\cos \omega t+\cos 3 \omega t+\cos 5 \omega t$
$>$ Superposition of three SHMs $(\cos \omega t, \cos 3 \sigma t, \cos 5 \omega t)$ is periodic motion not SHM.
(e) $e^{-\omega^{2} t^{2}}$
$>$ Non- periodic as exponential functions do not repeat themselves.
(f) $1+\omega t+\omega^{2} t^{2}$
$>$ Non-periodic
5. A particle is in ear s ple harmonic motion between two points, A and $\mathrm{B}, 10 \mathrm{~cm}$ apart. Take the direction from $A$ to $B$ as pos rection and gi he signs of velocity, acceleration \& force on the particle when it is
(a) at the end A ,
(b) at the end B,
(d) at 2 cm away from B going towards A,
oing towards A ,
(f) at 4 cm away from B going towards A.

Ans.

| Case | velocity | Acceleration | Force |
| :---: | :---: | :---: | :---: |
| (a) at th nd A | Zero <br> Velocity is zero at ends | Positive <br> Directed from A to B | Positive <br> Directed from A to B |
| (b) at the end B | Zero <br> Velocity is zero at ends | Negative <br> Directed from B to A | Negative <br> Directed from B to A |
| (c) at the mid-point of AB going towards A | Negative <br> Directed from B to A | Zero <br> Acc. is zero at mid-pt. | Zero |

A.K. Yadav

| (d) at 2 cm away from B going towards A$\stackrel{0}{\mathrm{~A}} \stackrel{\stackrel{2 \mathrm{~cm}}{\mathrm{~B}}}{\stackrel{0}{4}}$ | Negative | Negative | Negative |
| :---: | :---: | :---: | :---: |
|  | direction of motion is opposite to the conventional +ve direction |  |  |
| (e) at 3 cm away from A going towards B | Positi | Positiv | Positi |
|  | tional +ve direc |  |  |
| (f) at 4 cm away from B going towards A$\qquad$ | Negative |  | Negative |
|  | direction of motion is opposite to the conventional +ve direction |  |  |

6. Which of the following relationships between the acceleration $a$ and the simple harmonic motion?
(a) $a=0.7 x$
(b) $a=-200 x^{2}$
(c) $a=-10 x$
ement
ticle involve

Ans.
(c) because it is equivalent to the SHM relation $a=-\frac{k}{m} x$
7. The motion of a particle executing simple harmonic
is do ibed be displacement function, $x(t)=A \cos (\omega t+\varphi)$. If the initial $(t=0) \mathrm{p}$ ition the pa are its amplitude and initial phase anole? Th ngular fre aency the particle is $\pi \mathrm{s}^{-1}$. If instead of the cosine function, we cho escribe the $\mathrm{SHM}: x=B \sin (\omega t+\alpha)$, what are the amplitude and initial phase of the particle wit he above initial conditions.
Ans. (At $t=0, x=1, v=\omega \mathrm{em} / \mathrm{s}, \omega=\pi \mathrm{rad} / \mathrm{s})$


## Case II

As $x=B \sin (\omega t+\alpha)$

$$
1=B \sin (\omega(0)+\alpha)
$$

$$
B \sin \alpha=1 \quad \longrightarrow(1)
$$

Also $v=\frac{d x}{d t}$

$$
\omega=\frac{d}{d t}(B \sin (\omega t+\alpha))
$$

$$
\omega=B \omega \cos (\omega t+\alpha)
$$

$$
1=B \cos (\omega(0)+\alpha)
$$

$$
\begin{equation*}
B \cos \alpha=1 \quad \longrightarrow \tag{2}
\end{equation*}
$$

$$
\begin{aligned}
(1)^{2}+(2)^{2} \Rightarrow(B \sin \alpha)^{2}+(B \cos \alpha)^{2} & =(1)^{2}+(1)^{2} \\
B^{2} & =2 \\
B & =\sqrt{2} \mathrm{~cm}
\end{aligned}
$$

$$
\begin{aligned}
(2) \div(1) \Rightarrow \quad \frac{A \sin \phi}{A \cos \phi} & =\frac{-1}{1} \\
\tan \phi & =-1 \\
\phi & =\frac{7 \pi}{4}
\end{aligned}
$$

$$
\begin{aligned}
(1) \div(2) \Rightarrow \quad \frac{B \sin \alpha}{B \cos \alpha} & =\frac{1}{1} \\
\tan \phi & =1 \\
\phi & =\frac{\pi}{4}
\end{aligned}
$$

8. A spring balance has a scale that reads from $0-50 \mathrm{~kg}$. The length of the scale is 20 cm . A body suspended from this balance, when displaced and released, oscillates with a period of 0.6 s . What is the eight of the body?

Ans.
Spring constant, $k=\frac{F}{l}=\frac{50 \times 9.8}{0.2}=2450 \mathrm{Nm}^{-1}$
Time period, $T=2 \pi \sqrt{\frac{m}{k}}$

$$
\begin{aligned}
T^{2} & =\frac{4 \pi^{2} m}{k} \\
0.6 \times 0.6 & =\frac{4 \times 3.14 \times 3.14 \times m}{2450} \\
m & =22.36 \mathrm{~kg}
\end{aligned}
$$

Weight, $W=m g=22.36 \times 9.8=219.2 N$
9. A spring having with a spring constatu

A mass of 3 kg is attached to the free end of th ring
then pulled sideways to a distance of 2.0 cm and re
(i) the frequency of $d$ illations,
(ii) maximum veler on of the mass, and
(iii) the maximum sf the mass.

Ans.

10. In Q9, let us ke the position of mass when the spring is unstreched as $x=0$, and the direction from left to right as the positive direction of $x$-axis. Give $x$ as a function of time t for the oscillating mass if at the moment we start the stopwatch $(t=0)$, the mass is
(a) at the mean position,
(b) at the maximum stretched position, and
(c) at the maximum compressed position.

In what way do these functions for SHM differ from each other, in frequency, in amplitude or the initial phase?

Ans.
Given : $\omega=\sqrt{\frac{k}{m}}=\sqrt{\frac{1200}{3}}=20 \mathrm{rad} . \mathrm{s}^{-1}, A=2 \mathrm{~cm}$
Displacement equation : $x=A \sin (\omega t+\phi)$
(a) At mean position $\phi=0, x=2 \sin (20 t+0)=2 \sin 20 t$
(b) At maximum stretched position, $\phi=90^{\circ}$ (as mass is towards extreme right), $x=2 \sin \left(20 t+\frac{\pi}{2}\right)=2 \cos 20 t$
(c) At maximum compressed position $\phi=\frac{3 \pi}{2}$ (as mass is towards extreme left) $x=2 \sin \left(20 t+\frac{3 \pi}{2}\right)=-2 \cos 20 t$

- The functions have the same frequency $\left(v=\frac{\omega}{2 \pi}=\frac{20}{2 \times 3.14}=3.18 s^{-1}\right)$ and amplitude ( 2 cm ), but different initial phases $\left(\phi=0, \frac{\pi}{2}, \frac{3 \pi}{2}\right)$

11. Figures correspond to two circular motion circle, the period of revolution, sense of revolution (i.e. clockwise or anti-cio vise) are indicated on each figure. Obtain the correspondin: mple harmonic motions of e $x$-projection of the radius vector of the revolving racle in each case.

Ans. Displacement equation : $x=A \cos (\omega t+\phi)=A \cos \left(\frac{2 \pi}{T} t+\phi\right)$


Phase angle, $\phi=\frac{\pi}{2}\left[\begin{array}{l}\because \text { At } \mathrm{t}=0 \text {, radius vector } \mathrm{OP} \\ \text { makes } \frac{\pi}{2} \text { angle with }+\mathrm{X}-\text { axis }\end{array}\right]$ $x=3 \cos \left(\frac{2 \pi}{2} t+\frac{\pi}{2}\right)=(-3 \sin \pi t) c m$


Given : $T=4 s, \quad A=2 \mathrm{~cm}$
Phase angle, $\phi=\pi\left[\begin{array}{l}\because \text { At } \mathrm{t}=0 \text {, radius vector OP } \\ \text { makes } \pi \text { angle with } \mathrm{X}-\text { axis }\end{array}\right]$
$x=2 \cos \left(\frac{2 \pi}{4} t+\pi\right)=\left(-2 \cos \frac{\pi}{2} t\right) m$
12. Plot the corresponding reference circle for each of the following simple harmonic motions. Indicate the initial $(t=0)$ position of the particle, the radius of the circle, and the angular speed of the rotating particle. For simplicity, the sense of rotation may be fixed to be anticlockwise in every case: $(x$ is in cm and $t$ is in $s)$.
(a) $x=-2 \sin (3 t+\pi / 3)$
(b) $x=\cos (\pi / 6-t)$
(c) $x=3 \sin (2 \pi t+\pi / 4)$
(d) $x=2 \cos \pi t$

Ans.
Displacement equation : $x=A \cos (\omega t+\phi)=A \cos \left(\frac{2 \pi}{T} t+\phi\right)$

13. Figure (a) shows a spring of force constant $k$ clamped rigidly at one end and a mass $m$ attached to its free end. A force $\mathbf{F}$ applied at the free end stretches the spring. Figure (b) shows the same spring with both ends free and
A.K. Yadav
attached to a mass $m$ at either end. Each end of the spring in Fig. (b) is stretched by the same force $\mathbf{F}$.

(a)

(b)
(a) What is the maximum extension of the spring in the two cases?
(b) If the mass in Fig. (a) \& the two masses in Fig. (b) are released, what is the perm case?

Ans. (a) Extension produced

14. The piston in the cylinder head of a locomotive has a stroke (twice the amplitude) of 1.0 m . If the piston moves with simple harmonic motion with an angular frequency of $200 \mathrm{rad} / \mathrm{min}$, what is its maximum speed?

Ans. Given : $A=\frac{1}{2}=0.5 \mathrm{~m}, \quad \omega=200 \mathrm{rad} \cdot \mathrm{min}^{-1}$
To find $: v_{\max }=$ ?
Sol ${ }^{n} \quad: v_{\max }=A \omega=0.5 \times 200=100 \mathrm{rad} . \mathrm{min}^{-1}$
15. The acceleration due to gravity on the surface of moon is $1.7 \mathrm{~m} \mathrm{~s}^{-2}$. What is the time period of a simple pendulum on the surface of moon if its time period on the surface of earth is 3.5 s ? $\left(g=9.8 \mathrm{~m} \mathrm{~s}^{-2}\right)$

Ans. For earth, $T=3.5 s, \quad g=9.8 m s^{-2}$
Time period on earth, $T=2 \pi \sqrt{\frac{l}{g}}$

$$
\begin{aligned}
& 3.5=2 \times 3.14 \sqrt{\frac{l}{9.8}} \\
& l=\frac{3.5 \times 3.5 \times 9.8}{4 \times 3.14 \times 3.14}=3.04 \mathrm{~m}
\end{aligned}
$$

For moon, $l=3.04 m, \quad g=1.7 \mathrm{~ms}^{-2}$
Time period on moon, $T^{\prime}=2 \pi \sqrt{\frac{l}{g}}$
16. Answer the following questions :
(a) Time period of a particle in SHM depends on force constant $k$ and mass $m$ of the particle: $T=2 \pi \sqrt{\frac{m}{k}} \cdot \mathrm{~A}$ simple pendulum ecutes SHM approximately. Why then is the time period of a pendulum independent of the mass of pen lum?
(b) The motion of a reximately simple harmonic for small angle oscillations. For larger angles of oscillation, a re involved analysis shows that $T$ is greater than $2 \pi \sqrt{\frac{l}{g}}$. Think of a qualitative
(c)


$$
g=-\frac{F}{m \sin \theta}
$$

For large $\theta, \sin \theta>\theta$. This decreases the effective value of $g$. Hence, time period increases as $T=2 \pi \sqrt{\frac{l}{g}}$
(c) Motion in the wristwatch depends on spring action and is independent of acceleration due to gravity.
(d) During free fall $\mathrm{g}=0 \longrightarrow$ Time period, $T=2 \pi \sqrt{\frac{l}{0}}=\infty \longrightarrow$ Frequency, $v=\frac{1}{T}=\frac{1}{\infty}=0$
17. A simple pendulum of length $l$ and having a bob of mass $M$ is suspended in a c The car moving on a circular track of radius $R$ with a uniform speed $v$. If the pendulum makes smalin oscilinal direction about its equilibrium position, what will be its time period?
Ans. Acceleration experienced by simple pendulum due to gravity,
Acceleration experienced by simple pendulum due to circular motion,
Resultant acceleration, $a_{\text {res }}=\sqrt{a^{2}+\left(a^{\prime}\right)^{2}}$

Time period, $T=2 \pi \sqrt{\frac{l}{a_{\text {res }}}}=2 \pi \sqrt{\frac{l}{\sqrt{g^{2}+v^{4} \times R^{2}}}}$
18. A cylindrical piece of cork of density of base area d height $h$ floats in a liquid of density $\rho_{l}$. The cork is depressed slightly and hen released. Show that the cork oscillates up and down simple harmonically with a $\operatorname{period} T=2 \pi \sqrt{\frac{h \rho}{\rho, g}}$ wh $\rho$ is the density of cork. (Ignore damping due to viscosity of the liquid).

Ans. In equilibrium, Weight of cork = Weight of liquid displaced by cork
Let the cork be depressed slightly by $x$. As a result, some extra water of a certain volume is displaced. Hence,


Time period of oscillation of the cork, $T=2 \pi \sqrt{\frac{m}{k}}=2 \pi \sqrt{\frac{A h \rho}{A g \rho_{l}}}=2 \pi \sqrt{\frac{h \rho}{g \rho_{l}}}$
19. One end of a U-tube containing mercury is connected to a suction pump and the other end to atmosphere. A small pressure difference is maintained between the two columns. Show that, when the suction pump is
removed, the column of mercury in the U-tube executes simple harmonic motion.
Ans. Restoring force, $F=-m g$

$$
\begin{aligned}
& k x=-\rho V g \\
& k x=-\rho A(2 x) g \\
& k=-2 \rho A g
\end{aligned}
$$

Time period of oscillation of the cork, $T=2 \pi \sqrt{\frac{m}{k}}=2 \pi \sqrt{\frac{A l \rho}{2 \rho A g}}=2 \pi \sqrt{\frac{l}{2 g}}$
Hence, the mercury column executes simple harmonic motion with time period $T=2 \pi$


